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1 Introduction

A large literature studies the identification and estimation of treatment effects when a bi-

nary treatment is randomly assigned conditional on covariates. This assumption is called

unconfoundedness, conditionally independent treatment assignment, or ignorability, among

other terms. With observational data it is often considered very strong, however, so a cor-

responding literature has developed to relax this assumption. These papers use a variety

of different classes of relaxations of unconfoundedness. That is, there are different ways of

formalizing the idea that treatment is “almost” randomly assigned, given the covariates.

This variation raises a question: How do these different relaxations compare to each other?

This question is important because empirical researchers are often concerned that the num-

ber of robustness checks they must consider is constantly growing; if some of these checks

are related, however, then that relationship can potentially be used to simplify the overall

analysis. Moreover, mathematically related analyses do not necessarily provide “indepen-

dent” evidence of robustness, a second motivation for better understanding the relationships

between different relaxations of an assumption.

With that aim, this paper makes two main contributions. First, we define a general

class of relaxations, which includes several previous approaches as special cases. Second, we

derive closed form, analytical identification results for treatment effects under this general

class of relaxations. This paper therefore unifies several disparate identification results in

the literature. In doing so, we also provide a variety of new identification results, because

we study an extensive list of parameters, including quantile treatment effects (QTEs) and

the distribution of treatment effects (DTEs), whereas most existing papers focus solely on

average-type treatment effects. These new results were previously unknown even for the

specific types of relaxations that have been considered before. We give a precise discussion

of how our results compare to the previous literature in the next subsection.

In section 2 we set up the baseline treatment effects model and define the target pa-

rameters we study. We define our general class of relaxations at the start of section 3. We

show how this class relates to previous relaxations in sections 3.1 and 3.2. In section 4 we

derive general analytical identification results for marginal cdfs of potential outcomes and

monotonic functionals of those cdfs. We apply those results in section 5 to obtain analytical

bounds on various treatment effect parameters. We conclude in section 6.
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Related Literature

A vast literature studies unconfoundedness; we do not attempt a comprehensive review

here. Instead we discuss the most closely related prior work. Nonparametric relaxations of

unconfoundedness were pioneered by Paul Rosenbaum’s work (see his 2002 or 2017 books for

a survey, for example). His work focuses on sensitivity analysis within the context of finite

sample randomization inference (c.f., chapter 5 of Imbens and Rubin 2015). Much of the

subsequent literature has instead focused on large population level identification analysis. In

particular, inspired by Rosenbaum’s approach, Tan (2006) proposed the marginal sensitivity

model (MSM), a specific nonparametric relaxation of unconfoundedness (which we review

in section 3). Given this relaxation, Tan showed that bounds on parameters of interest can

be characterized as the solutions to optimization problems with infinitely many constraints,

but did not provide any formal results, proofs, or closed form expressions for these bounds.

Zhao, Small, and Bhattacharya (2019) derived non-sharp bounds on the average potential

outcome E(Yx) and the average treatment effect (ATE) under the MSM, but also did not

derive closed form expressions for these bounds. Dorn and Guo (2023) strengthened that

result by deriving sharp bounds on E(Yx), ATE, and the average effect of treatment on the

treated (ATT) under the MSM, but again without closed form expressions. Dorn, Guo,

and Kallus (2024) subsequently refined that result by obtaining closed form expressions for

sharp bounds on E(Yx) and ATE under the MSM, in addition to developing the concept of

double-validity and double sharpness. Tan (2024) gives alternative sharp bound expressions

for the ATE under the MSM. Kallus and Zhou (2018) studied policy learning under the

MSM, which is related to identification of the average weighted welfare (what they call the

“policy value”), but they do not derive population bounds on this parameter.

This existing literature on the MSM largely focuses on average potential outcomes E(Yx)

or the ATE. Our paper provides the first sharp bounds on a wide variety of target parameters

under the MSM, including the quantile treatment effect (QTE), the quantile treatment effect

on the treated (QTT), the distribution of treatment effects (DTE), and the average weighted

welfare (AWW). Moreover, for many of the parameters we study, our bounds are closed

form. The existence of closed form expressions simplifies the construction of estimation and

inference procedures, and also allows us to analytically examine how the bounds depend on

the distribution of the observed data, and thus which features of the data lead results to be

robust.

Masten and Poirier (2016, 2018a) proposed an alternative relaxation of unconfounded-

ness called conditional c-dependence, and derived closed form sharp bounds on a variety of

treatment effect parameters under this relaxation, including E(Yx), ATE, ATT, the QTE,
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and the DTE (in Masten and Poirier 2020). In the current paper we extend these identifica-

tion results to a class of parameters that also includes the average weighted welfare (AWW),

weighted average treatment effects, and to quantiles of the distribution of conditional average

treatment effects (QCATE). Those earlier papers also restricted attention to continuous or

binary outcomes whereas our new results apply for any distribution of the outcome, includ-

ing mixed continous-discrete distributions. We also show how the conditional c-dependence

relaxation is related to the marginal sensitivity model.

While our general class of relaxations includes several previously proposed relaxations of

unconfoundedness, there are alternative relaxations where it is not yet clear if they can be

accommodated by our class. This includes Bonvini and Kennedy (2022), who derive closed-

form sharp bounds on ATE under a mixture-style relaxation, and Huang and Pimentel

(2025), who derive closed-form non-sharp bounds on ATT under an assumption about how

much unobserved variables can affect the variance of odds ratios similar to those that arise

in the MSM; in appendix A.6 they derive sharp but non-closed form bounds on the ATT

under the same relaxation. It also includes Ding and VanderWeele (2016) and VanderWeele

and Ding (2017), who derive closed-form non-sharp bounds on the causal relative risk un-

der assumptions about relative risks involving latent confounders; Sjölander (2024) derives

closed-form sharp bounds under the same relaxation.

There are several related papers that provide general methods for deriving bounds. Dorn

and Yap (2024) show how to derive analytical expressions for sharp bounds on parameters

that can be written as certain weighted averages of outcomes under a restriction on a gen-

eralized likelihood ratio. Like us, they show that their class of relaxations includes several

previous relaxations (such as the MSM of Tan 2006 and conditional c-dependence of Masten

and Poirier 2018a). Whereas we only study relaxations of unconfoundedness, they also show

how to use their results to do sensitivity analysis for instrumental variables and regression

discontinuity designs. Their analysis of unconfoundedness, however, focuses on average po-

tential outcomes and ATE, whereas we also study parameters like the QTE and DTE. A

large literature in econometrics has studied how to derive identified sets for a variety of

parameters under a variety of assumptions when all observed variables are discretely dis-

tributed; see, for example, Torgovitsky (2019) and Gu, Russell, and Stringham (2024), and

the references therein. Duarte (2024) uses similar ideas to numerically compute identified

sets for a variety of sensitivity analyses when all variables are discretely distributed. Ram-

bachan, Coston, and Kennedy (2023) provide a variety of general sensitivity analyses for

binary outcomes. In contrast to this literature, we obtain analytical sharp bounds without

any restriction on the distribution of the outcome variable, which allows the outcome to be

continuously distributed or even mixed continuous-discretely distributed.
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Several prior papers also discuss the relationship between various relaxations of uncon-

foundedness. Masten and Poirier (2023) discuss mean independence, quantile independence

assumptions, and a weaker version of quantile independence that they call U -independence.
Their focus is on interpreting relaxations in terms of treatment selection models, rather than

providing identification results for a broad class of relaxations. Zhao et al. (2019, section

7.2) discuss the relationship between the MSM and Rosenbaum’s sensitivity model. For

binary outcomes, Rambachan et al. (2023, appendix D) relate their relaxation to the MSM,

Rosenbaum’s sensitivity model, conditional c-dependence, and an approach called Tukey’s

factorization.

Notation

For random a variable A and a random vector B, we let FA|B(a | b) := P(A ≤ a | B = b)

denote the conditional cdf. For τ ∈ (0, 1), we let QA|B(τ | b) := inf{a ∈ R : FA|B(a | b) ≥ τ}
denote the left-inverse of this cdf, that is, its conditional quantile function.

2 Setup and Target Parameters

We are interested in the causal impact of a binary treatment variable X ∈ {0, 1} on an

outcome variable Y . Let (Y1, Y0) be potential outcomes under treatment and no treatment

respectively. Denote the realized outcome by

Y = XY1 + (1−X)Y0.

Let W be a vector of covariates with support supp(W ) ⊆ RdW . We use px|w to denote

P(X = x | W = w). p1|w thus denotes the propensity score. We assume realizations of

(Y,X,W ) are observed by the researcher. Our identification analysis abstracts from sampling

uncertainty and assumes the joint distribution of (Y,X,W ) is known.

Throughout the paper we maintain the following assumption, which is a strict overlap

assumption. It is also sometimes called strict positivity.

Assumption 1. There exists ϵ > 0 such that p1|w ∈ [ϵ, 1− ϵ] for all w ∈ supp(W ).

With observational data, a commonly imposed assumption is unconfoundedness. It is

also called selection on observables, ignorability, or conditional independence. This assump-

tion states that potential outcomes are independent of treatment given covariates W . This

conditional independence is either imposed jointly on both potential outcomes, or on each
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potential outcome separately:

Yx ⊥⊥X | W for x ∈ {0, 1} or (Y1, Y0)⊥⊥X | W. (1)

Under Assumption 1 and either version of unconfoundedness given in equation (1), it is well

known that the pair of distribution functions (FY1|W , FY0|W ) is point-identified via

FYx|W (y | w) = P(Y ≤ y | X = x,W = w)

for x ∈ {0, 1}. This point-identification implies that many parameters that summarize

aspects of the distribution of (Y1, Y0, X,W ) are point-identified. Specifically, parameters that

can be expressed as functionals of FY1|W , FY0|W , and the known distribution of observables

(Y,X,W ), are point-identified. For example, we can point-identify the Conditional Average

Treatment Effect (CATE) as defined by CATE(w) := E[Y1 − Y0 | W = w] because it can be

written as

E[Y1 − Y0 | W = w] =

∫
y1 dFY1|W (y1 | w)−

∫
y0 dFY0|W (y0 | w).

However, parameters that depend on other aspects of the distribution of potential outcomes

may only be partially identified. For example, consider the distribution function of Y1 − Y0,

the unit-level treatment effect:

FY1−Y0(z) =

∫
1(y1 − y0 ≤ z) dFY1,Y0(y1, y0).

This parameter depends on the structure of the dependence between the two potential out-

comes, which is unknown from either version of the unconfoundedness assumption. As

discussed in Fan and Park (2010), FY1−Y0(z) is partially identified and sharp bounds can be

recovered in terms of the distribution of (Y,X,W ).

To help classify treatment effect parameters, consider the decomposition

FY1,Y0|X,W (y1, y0 | x,w) = C1,0|X,W

(
FY1|X,W (y1 | x,w), FY0|X,W (y0 | x,w)

∣∣ x,w),
where C1,0|X,W (·, · | x,w) is a copula that characterizes the dependence between Y1 and Y0

conditional on (X,W ) = (x,w). By Sklar’s Theorem (Sklar 1959), such a copula exists.

Given that FY,X,W is known, we consider treatment effect parameters that can be written as

a function of (FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ). We denote these parameters through the
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functional

θ(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ), (2)

and we give several examples below. The dependence of θ on some of its arguments is

suppressed if the functional is constant with respect to them. We will sometimes denote these

parameters as functionals of (FY1|W , FY0|W , FY,X,W ) rather than (FY1|X,W , FY0|X,W , FY,X,W ).

These two formulations are equivalent due to the relationship

FYx|W (y | w) = FY |X,W (y | x,w)px|w + FYx|X,W (y | 1− x,w)p1−x|w (3)

which holds for all (y, x, w) ∈ R× {0, 1} × supp(W ).

Next we consider eleven example target parameters. Our results give sharp bounds for all

eleven parameters under our general class of assumptions, including the marginal sensitivity

model as a special case. For many of these parameters we also obtain analytical, closed form

expressions for the bound functions.

Example 1 (Conditional Quantile Treatment Effect). For quantile index τ ∈ (0, 1) and

covariate value w ∈ supp(W ), the conditional quantile treatment effect (CQTE) can be

written as

CQTE(τ | w) := QY1|W (τ | w)−QY0|W (τ | w) = θCQTE(FY1|W , FY0|W ; τ, w)

where θCQTE(FY1|W , FY0|W ; τ, w) := F−1
Y1|W (τ | w)−F−1

Y0|W (τ | w) where F−1
Yx|W (τ | w) = inf{y ∈

R : FYx|W (y | w) ≥ τ} is the left-inverse of FYx|W (· | w), or its conditional quantile function.

Example 2 (Conditional Average Treatment Effect). For covariate value w ∈ supp(W ), the

conditional average treatment effect (CATE) can be written as

CATE(w) := E[Y1 − Y0 | W = w] = θCATE(FY1|W , FY0|W ;w)

where θCATE(FY1|W , FY0|W ;w) :=
∫
y1 dFY1|W (y1 | w)−

∫
y0 dFY0|W (y0 | w).

Example 3 (Average Treatment Effect). Denote the average treatment effect (ATE) as

ATE := E[Y1 − Y0] = θATE(FY1|W , FY0|W , FW )

where θATE(FY1|W , FY0|W , FW ) :=
∫ (∫

y1 dFY1|W (y1 | w)−
∫
y0 dFY0|W (y0 | w)

)
dFW (w). We
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can also consider weighted average treatment effects of the kind

WATE(ω) := E[ω(W )(Y1 − Y0)]

for an identified function ω : supp(W ) → R≥0. The ATE is a special case where ω(w) = 1.

Example 4 (Average Treatment Effect on the Treated). Denote the average treatment effect

on the treated (ATT) as

ATT := E[Y1 − Y0 | X = 1] = θATT(FY0|X,W , FY,X,W )

where θATT(FY0|X,W , FY,X,W ) := E[Y | X = 1]−
∫ ∫

y0 dFY0|X,W (y0 | 1, w) dFW |X(w | 1).

Example 5 (Quantile Treatment Effect). For τ ∈ (0, 1), denote the quantile treatment effect

(QTE) as

QTE(τ) := QY1(τ)−QY0(τ) = θQTE(FY1|W , FY0|W , FW ; τ)

where θQTE(FY1|W , FY0|W , FW ; τ) := F−1
Y1

(τ)−F−1
Y0

(τ) and FYx(·) =
∫
FYx|W (· | w) dFW (w) for

x ∈ {0, 1}.

Example 6 (Quantile Treatment Effect on the Treated). For τ ∈ (0, 1), denote the quantile

treatment effect on the treated (QTT) as

QTT(τ) := QY1|X(τ | 1)−QY0|X(τ | 1) = θQTT(FY0|X,W , FY,X,W ; τ)

where θQTT(FY0|X,W , FY,X,W ; τ) := QY |X(τ | 1)− F−1
Y0|X(τ | 1) with

FY0|X(· | 1) =
∫

FY0|X,W (· | 1, w) dFW |X(w | 1).

Example 7 (CATE Distribution). For τ ∈ (0, 1), denote the quantile of the CATE (QCATE)

as

QCATE(τ) := F−1
CATE(W )(τ) = θQCATE(FY1|W , FY0|W , FW ; τ)

where θQCATE(FY1|W , FY0|W , FW ; τ) := F−1
CATE(W )(τ) with

FCATE(W )(z) =

∫
1(θCATE(FY1|W , FY0|W ;w) ≤ z) dFW (w).
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This parameter is motivated by the sorted effects studied in Chernozhukov, Fernández-Val,

and Luo (2018).

Example 8 (AverageWeightedWelfare). For a weight (or assignment) function ω : supp(W ) →
[0, 1], denote the average weighted welfare (AWW) as

AWW(ω) := E[ω(W )Y1 + (1− ω(W ))Y0] = θAWW(FY1|W , FY0|W , FW ;ω)

where

θAWW(FY1|W , FY0|W , FW ;ω) :=

∫ (
ω(w)

∫
y1 dFY1|W (y1 | w) + (1− ω(w))

∫
y0 dFY0|W (y0 | w)

)
dFW (w).

Kallus and Zhou (2018) called the AWW the policy value.

Example 9 (Joint Distribution Function). For (y1, y0) ∈ R2, the joint cumulative distribu-

tion function (cdf) of (Y1, Y0) is

FY1,Y0(y1, y0) := P(Y1 ≤ y1, Y0 ≤ y0) = θCDF(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; y1, y0)

where

θCDF(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; y1, y0) :=∑
x∈{0,1}

∫
C1,0|X,W (FY1|X,W (y1 | x,w), FY0|X,W (y0 | x,w) | x,w)px|w dFW (w).

Example 10 (Distribution of Treatment Effects). For z ∈ R, the cumulative distribution

function for the unit level treatment effect Y1 − Y0 (called the DTE) is

DTE(z) := FY1−Y0(z) = P(Y1 − Y0 ≤ z) = θDTE(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; z)

where

θDTE(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; z) :=∑
x∈{0,1}

∫ (∫
{y1−y0≤z}

dC1,0|X,W (FY1|X,W (y1 | x,w), FY0|X,W (y0 | x,w) | x,w)
)
px|w dFW (w).

Example 11 (Quantiles of Treatment Effects). For τ ∈ (0, 1), the quantiles of the distribu-
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tion function of treatment effect (QDTE) Y1 − Y0 is

QY1−Y0(τ) := inf{z ∈ R : FY1−Y0(z) ≥ τ} = θQDTE(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; τ)

where

θQDTE(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; τ)

:= inf{z ∈ R : θDTE(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; z) ≥ τ}.

The parameters in examples 1–8 only depend on the distribution of potential outcomes

through their marginal distributions given (X,W ), while the parameters in examples 9–

11 also depend on their copulas. Under overlap and unconfoundedness, the parameters

in 1–8 are all point-identified. The parameters 9–11 are partially identified under overlap

and unconfoundedness since the conditional copulas C1,0|X,W are not identified from the

joint distribution of (Y,X,W ). In other words, these parameters depend on the type of

dependence between Y1 and Y0, and unconfoundedness does not reveal any information about

this dependence. For example, Fan and Park (2010) show the identified set for FY1−Y0(z),

the DTE, is an interval and they provide a closed-form expression for its lower and upper

bounds.

However, if unconfoundedness fails, all these parameters will be partially identified. The

identified set for parameters that are partially identified under unconfoundedness becomes

larger under failures of unconfoundedness.

3 Relaxing Unconfoundedness

We now consider relaxations of the unconfoundedness assumption. We will consider two re-

lated, general relaxations of unconfoundedness that encompass several disparate relaxations

that were studied in the literature. We begin by considering a class of assumptions on

the probabilities of treatment when conditioning on covariates W and one of the potential

outcomes.

Assumption 2 (Marginal c-dependence). Let (c(w, η), c(w, η)) satisfy 0 < c(w, η) ≤ p1|w ≤
c(w, η) < 1 for all w ∈ supp(W ). The potential outcomes satisfy marginal c-dependence if,

for x ∈ {0, 1},

px(Yx, w) := P(X = 1 | Yx,W = w) ∈ [c(w, η), c(w, η)]
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almost surely conditional on W = w for all w ∈ supp(W ).

This assumption restricts the manner in which potential outcomes affect the treatment

probability px(y, w), which we call a latent propensity score. We will use c-dependence

assumptions to conduct sensitivity analyses for unconfoundedness. Here the sensitivity pa-

rameters are c(w, η) and c(w, η), which we refer to as bound functions. Like the notation

in Rambachan et al. (2023), we let η be a possibly infinite-dimensional nuisance parameter

that is point-identified from the distribution FY,X,W . The bound functions are also allowed

to depend on the covariate value w. In principle, we can also allow the bounds to differ

across x ∈ {0, 1}, but we do not include an x subscript for simplicity. The specification of

c(w, η) and c(w, η) is left implicit, which allows them to be functions of low-dimensional or

scalar sensitivity parameters. For example, the marginal sensitivity model of Tan (2006),

which depends on a single sensitivity parameter, can be viewed as a special case of marginal

c-dependence. We show this in section 3.1.

We can also see that setting c(w, η) = c(w, η) = p1|w yields unconfoundedness as a special

case of marginal c-dependence, while letting (c(w, η), c(w, η)) approach (0, 1) implies that no

restrictions on the dependence between X and Yx (given covariates) are imposed. Note that

we restrict the propensity score p1|w to lie within our specified bounds for px(Yx, w). If

the propensity score were outside these bounds, then the assumption would be misspecified

because, by the law of iterated expectations, p1|w = E[P(X = 1 | Yx,W = w) | W = w] ∈
[c(w, η), c(w, η)].

We also consider a closely related class of assumptions that restricts the probability of

treatment given both potential outcomes.

Assumption 3 (Joint c-dependence). Let (c(w, η), c(w, η)) satisfy 0 < c(w, η) ≤ p1|w ≤
c(w, η) < 1 for all w ∈ supp(W ). The potential outcomes satisfy joint c-dependence if

p(Y1, Y0, w) := P(X = 1 | Y1, Y0,W = w) ∈ [c(w, η), c(w, η)]

almost surely conditional on W = w for all w ∈ supp(W ).

Joint c-dependence with bound functions c(w, η) and c(w, η) implies marginal c-dependence

with the same bound functions. This is due to the law of iterated expectations.

Lemma 1. Let Assumption 3 hold for (c(w, η), c(w, η)). Then, Assumption 2 holds for

(c(w, η), c(w, η)).

We next show that several unconfoundedness relaxations from recent related literature

can be viewed as special cases of either marginal or joint c-dependence.
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3.1 The Marginal Sensitivity Model

Tan (2006) proposed the Marginal Sensitivity Model (MSM), which restricts the odds ratio

between propensity scores and treatment probabilities that also condition on the potential

outcome Yx, for x = 0, 1. For x ∈ {0, 1}, let

Rx(Yx,W ) :=
P(X = 1 | Yx,W )

P(X = 0 | Yx,W )

/
P(X = 1 | W )

P(X = 0 | W )

denote this odds ratio. When Yx is continuously distributed with respect to the Lebesgue

measure, this ratio can also be expressed as ratios of conditional densities of Yx | X = 1,W

and Yx | X = 0,W .

Tan (2006)’s MSM posits known bounds for these odds ratios.

Definition 1 (Marginal Sensitivity Model (MSM)). Let Λ ∈ [1,+∞) be known. The po-

tential outcomes satisfy the Marginal Sensitivity Model if

Rx(Yx, w) ∈
[
Λ−1,Λ

]
for x ∈ {0, 1}

almost surely conditional on W = w for all w ∈ supp(W ).

Λ is a scalar sensitivity parameter. Setting Λ = 1 is equivalent to assuming unconfound-

edness, and increasing Λ allows for more dependence of latent propensity scores on potential

outcomes. Variants of Tan (2006)’s MSM whose odds ratios condition on both potential

outcomes have also been considered. Similarly, these odds ratios may instead condition on

an abstract confounder U rather than potential outcomes. See, for example, Dorn and Guo

(2023) and Dorn et al. (2024) for recent examples of these two variants. To distinguish it

from the case where one conditions on the potential outcomes one at a time, we call the

version that conditions on both potential outcomes the Joint Sensitivity Model (JSM).

Definition 2 (Joint Sensitivity Model (JSM)). Let Λ ∈ [1,+∞) be known. The potential

outcomes satisfy the Joint Sensitivity Model if

R(Y1, Y0, w) ∈
[
Λ−1,Λ

]
for x ∈ {0, 1}

almost surely conditional on W = w for all w ∈ supp(W ), where

R(Y1, Y0,W ) :=
P(X = 1 | Y1, Y0,W )

P(X = 0 | Y1, Y0,W )

/
P(X = 1 | W )

P(X = 0 | W )
.

We now state generalizations of the MSM and JSM that allow their odds ratios to have
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arbitrary bounds, as opposed to bounds that have product equal to 1. We also allow their

bounds to depend on covariates or nuisance parameters. We will continue distinguishing

between marginal sensitivity models, which condition on one potential outcome at a time,

and joint sensitivity models, which condition on both potential outcomes.

Definition 3 (Generalized Sensitivity Models). Let Λ(w, η) ∈ (0, 1] and Λ(w, η) ∈ [1,+∞)

for all w ∈ supp(W ) where Λ(w, η) and Λ(w, η) are known. The potential outcomes satisfy

the Generalized Marginal Sensitivity Model (GMSM) if

Rx(Yx, w) ∈
[
Λ(w, η),Λ(w, η)

]
for x ∈ {0, 1}

almost surely conditional on W = w for all w ∈ supp(W ). They satisfy the Generalized

Joint Sensitivity Model (GJSM) if

R(Y1, Y0, w) ∈
[
Λ(w, η),Λ(w, η)

]
almost surely conditional on W = w for all w ∈ supp(W ).

We can see that the MSM is a special case of the GMSM by setting [Λ(w, η),Λ(w, η)] =

[Λ−1,Λ]. Similarly, the JSM is a special case of the GJSM.

The GMSM is equivalent to marginal c-dependence because, for each bound function

pair [c(w, η), c(w, η)] under marginal c-dependence, there exists exactly one corresponding

bound function pair [Λ(w, η),Λ(w, η)] under the GMSM. The same link exists between joint

c-dependence and the GJSM. We show this in the following proposition.

Proposition 1 (Equivalence of Sensitivity Models).

1. Let marginal (joint) c-dependence hold with bound functions [c(w, η), c(w, η)]. Then

the GMSM (GJSM) holds with bound functions

[
Λ(w, η),Λ(w, η)

]
=

[
c(w, η)

1− c(w, η)

p0|w
p1|w

,
c(w, η)

1− c(w, η)

p0|w
p1|w

]
. (4)

2. Let the GMSM (GJSM) hold with bound functions [Λ(w, η),Λ(w, η)]. Then marginal

(joint) c-dependence holds with bound functions

[c(w, η), c(w, η)] =

[
p1|wΛ(w, η)

p0|w + p1|wΛ(w, η)
,

p1|wΛ(w, η)

p0|w + p1|wΛ(w, η)

]
. (5)
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This proposition shows that the marginal c-dependence is equivalent to the generalized

marginal sensitivity model. Similarly, joint c-dependence is equivalent to the generalized

marginal sensitivity model.

3.2 Conditional c-dependence

Masten and Poirier (2018a) studied a relaxation of unconfoundedness they called conditional

c-dependence, which assumed symmetric bounds on the latent propensity score.

Definition 4 (Conditional c-dependence). Let c ∈ [0, 1] be a known scalar sensitivity pa-

rameter. The potential outcomes satisfy conditional c-dependence if

px(Yx, w) := P(X = 1 | Yx,W = w) ∈ [p1|w − c, p1|w + c]

almost surely conditional on W = w for all w ∈ supp(W ).

This is a special case of marginal c-dependence where the bounds equal

c(w, η) = p1|w − c and c(w, η) = p1|w + c.

Here the nuisance parameter is p1|(·), the propensity score function. Unconfoundedness is

obtained by setting c = 0, while the no-assumption bounds are obtained for c’s equal to or

larger than supw∈supp(W ) max{p1|w, p0|w}. Masten and Poirier (2018a) provided closed-form

expressions for sharp bounds on the CQTE, CATE, ATE, QTE, and ATT when potential

outcomes are continuously distributed or binary. Masten, Poirier, and Zhang (2024) describe

flexible parametric estimators of these bounds and provide nonstandard inference methods.

4 General Identification Results

Next we derive sharp bounds on a large class of target parameters under the relaxations

described in section 3. We will study a class of parameters that includes all eleven examples

in section 2 as special cases. Specifically, we will compute these parameters’ sharp bounds,

or their identified set, under marginal and joint c-dependence, which are equivalent to the

GMSM and GJSM, respectively.

4.1 Bounds on Marginal Distributions

Before studying our general class of treatment effect parameters, we first consider bounds

on the distribution functions of each potential outcome, given covariates. These cdfs are
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building blocks for these parameters and, as we will see, analytical bounds on these cdfs will

directly map into analytical bounds on these parameters.

Specifically, we begin by analyzing the conditional cdf of the potential outcome Yx given

the covariate value w, FYx|W (y | w) := P(Yx ≤ y | W = w). Under either marginal or joint

c-dependence, we can show that this cdf is bounded above and below by two cdfs which form

an envelope for FYx|W (y | w) for all values of (y, w) ∈ R× supp(W ).

Define the following functions:

F Y1|W (y | w) = max

{
FY |X,W (y | 1, w)

p1|w
c(w, η)

,
c(w, η)− p1|w

c(w, η)
+ FY |X,W (y | 1, w)

p1|w
c(w, η)

}
F Y1|W (y | w) = min

{
FY |X,W (y | 1, w)

p1|w
c(w, η)

,
c(w, η)− p1|w

c(w, η)
+ FY |X,W (y | 1, w)

p1|w
c(w, η)

}
F Y0|W (y | w) = max

{
FY |X,W (y | 0, w)

p0|w
1− c(w, η)

,
p1|w − c(w, η)

1− c(w, η)
+ FY |X,W (y | 0, w)

p0|w
1− c(w, η)

}
F Y0|W (y | w) = min

{
FY |X,W (y | 0, w)

p0|w
1− c(w, η)

,
p1|w − c(w, η)

1− c(w, η)
+ FY |X,W (y | 0, w)

p0|w
1− c(w, η)

}
.

Viewed as functions of y, these four functions are cdfs since they are nondecreasing, right-

continuous, and their limits as y → −∞,+∞ equal 0 and 1, respectively. We show these

four cdfs form bounds for FYx|W under marginal or joint c-dependence.

Lemma 2. Let Assumption 1 hold. Let either Assumption 2 or 3 hold. Then, for all

(y, w) ∈ R× supp(W ),

P(Y1 ≤ y | W = w) ∈
[
F Y1|W (y | w), F Y1|W (y | w)

]
and

P(Y0 ≤ y | W = w) ∈
[
F Y0|W (y | w), F Y0|W (y | w)

]
.

We note a few properties of these bounds. The bounds for FYx|W (y | w) collapse to a point
if either c(w, η) = p1|w or c(w, η) = p1|w. Also note that FY |X,W (y | x,w) always lies within
the bounds for FYx|W (y | w). This is because c-dependence never rules out unconfoundedness,
and unconfoundedness implies that the distribution of Y given (X,W ) = (x,w) equals that

of Yx given W = w.

These cdf bounds also yield cdf bounds under the GMSM or GJSM since they are equiva-

lent to c-dependence as shown in Proposition 1. These bounds are also valid for the standard

MSM or JSM, as they are special cases of marginal or joint c-dependence.

We now show these cdf bounds are sharp, or that they cannot be improved upon. This

is the case under marginal or joint c-dependence. The cdf of Yx | W = w can also lie in the
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interior of these bounds, as we show that any convex linear combination of the upper and

lower cdf bounds can be attained.

Before establishing this, let C denote the set of all bivariate copulas and let

C1,0|X,W =
{
{C1,0|x,w}x∈{0,1},w∈supp(W ) such that C1,0|x,w ∈ C

}
denote the collection of all bivariate copulas across all treatment and covariate values (x,w) ∈
{0, 1}× supp(W ). We also say that a distribution function for (Y1, Y0) | X,W is compatible

with the observed distribution FY,X,W if

FY1|X,W (· | 1, w) = FY |X,W (· | 1, w) and FY0|X,W (· | 0, w) = FY |X,W (· | 0, w) (6)

for all w ∈ supp(W ).

We now define the identified set for the distribution of (Y1, Y0) | X,W from the observ-

able distribution FY,X,W under c-dependence. This set consists of all conditional cdfs and

copulas that imply a distribution for (Y1, Y0) | X,W that is both compatible with the data

distribution FY,X,W and with a c-dependence condition.

Definition 5 (Identified Set). For a given distribution of the observables FY,X,W and bound

functions c := (c(w, η), c(w, η)), the identified set for (FY1|X,W , FY0|X,W , C1,0|X,W ) under marginal

c-dependence is given by

Imarg(FY,X,W ; c) := {(FY1|X,W , FY0|X,W , C1,0|X,W ) : FY1,Y0|X,W = C1,0|X,W (FY1|X,W , FY0|X,W )

and p1|(·) satisfy equation (6) and Assumption 2}.

The identified set under joint c-dependence is given by

I joint(FY,X,W ; c) := {(FY1|X,W , FY0|X,W , C1,0|X,W ) : FY1,Y0|X,W = C1,0|X,W (FY1|X,W , FY0|X,W )

and p1|(·) satisfy equation (6) and Assumption 3}.

In our later derivations, we sometimes refer to the identified set for (FY1|W , FY0|W , C1,0|X,W )

instead, which we denote by I i
0(FY,X,W ; c) for i ∈ {marg, joint}. Via equation (3), this set

can be viewed as an affine transformation of the identified set for (FY1|X,W , FY0|X,W , C1,0|X,W ).

We now show some key properties of the cdfs and copulas in these identified sets. We

begin with marginal c-dependence.

Theorem 1. Let Assumptions 1 and 2 hold. For all (ε, γ) ∈ [0, 1]2 and for any C1,0|X,W ∈
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C1,0|X,W ,

(
εF Y1|W + (1− ε)F Y1|W , γF Y0|W + (1− γ)F Y0|W , C1,0|X,W

)
∈ Imarg

0 (FY,X,W ; c).

This theorem shows that the four pairs of cdfs (F Y1|W , F Y0|W ), (F Y1|W , F Y0|W ), (F Y1|W , F Y0|W ),

and (F Y1|W , F Y0|W ) are part of the identified set. This is obtained by varying (ε, γ) over

{(1, 1), (0, 1), (1, 0), (0, 0)}. We show this by explicitly constructing latent propensity scores

p1(Y1, w) and p0(Y0, w) that lie in [c(w, η), c(w, η)] almost surely under the implied distribu-

tion of (Y1, Y0) | W = w. These propensity scores have a switching structure where they

equal the lower/upper bound for low values of Yx and the upper/lower bound for large values

of Yx. For example, the propensity score p1(Y1, w) associated with cdf upper bound F Y1|W

equals

p1(Y1, w) :=


c(w, η) if Y1 < Q1

A1 if Y1 = Q1

c(w, η) if Y1 > Q1

where

Q1 := QY |X,W

(
(c(w, η)− p1|w)c(w, η)

(c(w, η)− c(w, η))p1|w
| X = 1,W = w

)
and

A1 :=
P(Y = Q1, X = 1 | W = w)

F Y1|W (Q1 | w)− F Y1|W (Q1− | w)
.

Note that A1 ∈ [c(w, η), c(w, η)]. We denote limq↗Q1
F Y1|W (q | w) by F Y1|W (Q1− | w). The

propensity scores associated with the cdf bounds F Y1|W , F Y0|W , and F Y0|W can all be found

in Appendix A.

This switching structure of the latent propensity score was observed for conditional c-

dependence by Masten and Poirier (2018a, pages 335–339), and for the MSM in Proposition

2 of Dorn and Guo (2023). Our sharpness proof implies that latent propensity score p1(Y1, w)

satisfies an integral constraint, namely that E[p1(Y1,W ) | W = w] = P(X = 1 | W = w), in

order to ensure it is compatible with the observed propensity score.

Theorem 1 also shows that any convex linear combinations of these four cdf pairs lies

in the identified set. As a result, the identified set for FYx|W (y | w) is the entire closed

interval [F Yx|W (y | w), F Yx|W (y | w)]. Moreover, the identified set for the pair (FY1|W (y |
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w), FY0|W (y | w)) is the Cartesian product of their individual identified sets, meaning that

fixing or knowing the conditional distribution of one potential outcome does not affect the

identified set of the distribution of the other potential outcome.

Finally, Theorem 1 proves that no conditional copulas are ruled out by marginal c-

dependence. For example, marginal c-dependence allows Y1 and Y0 to be independent,

comonotonic1, or countermonotonic given X and W .

A similar result is obtained under joint c-dependence.

Theorem 2. Let Assumptions 1 and 3 hold. For all (ε, γ) ∈ [0, 1]2 there exists C1,0|X,W ∈
C1,0|X,W such that

(εF Y1|W + (1− ε)F Y1|W , γF Y0|W + (1− γ)F Y0|W , C1,0|X,W ) ∈ I joint
0 (FY,X,W ; c).

The only difference between the two theorems concerns the dependence structures be-

tween Y1 and Y0. Theorem 1 shows that all copulas are compatible with marginal c-

dependence, while our proof of Theorem 2 only exhibits one copula for each pair of con-

ditional distributions (εF Y1|W + (1− ε)F Y1|W , γF Y0|W + (1− γ)F Y0|W ).

4.2 Bounds on Monotonic Parameters

The sharp bounds provided in theorems 1 and 2 can be used to deliver analytical expressions

for sharp bounds on a large class of treatment effect parameters. We first define the identified

set for a parameter θ defined in (2).

Definition 6 (Parameter Identified Sets). Let θ(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ) be a pa-

rameter. Its identified set under marginal c-dependence with bounds c := (c(w, η), c(w, η))

is given by

Imarg
θ (FY,X,W ; c) := {θ(F1, F0, C, FY,X,W ) : (F1, F0, C) ∈ Imarg(FY,X,W ; c)} .

For a parameter θ(FY1|X,W , FY0|X,W , FY,X,W ) that does not depend on the copula C1,0|X,W , its

identified set under joint c-dependence is given by

Ij
θ(FY,X,W ; c) :=

{
θ(F1, F0, FY,X,W ) : (F1, F0, C) ∈ I joint(FY,X,W ; c) for some C ∈ C1,0|X,W

}
.

These sets are the parameter values consistent with the known distribution of observables

FY,X,W and with a c-dependence condition. Without restrictions on how θ depends on the

1This is also referred to as rank invariance. For example, see the discussion in Heckman, Smith, and
Clements (1997).
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distribution of potential outcomes, these sets may take various shapes.

We focus on a class of scalar estimands that can be ordered with respect to first order

stochastic dominance.

Definition 7 (First-Order Stochastic Dominance). Let F be the set of all univariate cdfs

and let F,G ∈ F . Say that F first-order stochastically dominates G, denoted by F ⪰ G, if

F (u) ≤ G(u) for all u ∈ R.

Next we define our target class of parameters.

Definition 8 (Monotonic Parameters). Let θ : F → R be a parameter. Say that θ is

increasing if F ⪰ G implies θ(F ) ≥ θ(G). Say that θ is decreasing if −θ is increasing, and

say θ is monotonic if it is either increasing or decreasing.

Following Manski (1997), monotonic parameters are also called D-parameters, or D1-

parameters. Also see Manski (2003) or Stoye (2010) who consider parameters that are

increasing with respect to second-order stochastic dominance.

As an example, consider a parameter θ(FY1|W ) that is increasing in FY1|W and suppose

c-dependence holds. Then

θ(FY1|W ) ∈
[
θ(F Y1|W ), θ(F Y1|W )

]
since F Y1|W ⪯ FY1|W ⪯ F Y1|W , which holds by Lemma 2. This interval cannot be made

narrower since the cdf bounds [F Y1|W , F Y1|W ] are sharp by theorems 1 and 2. Therefore,

the identified set for θ(FY1|W ) is a subset of this closed interval that always contains its two

endpoints. The interior of this interval is also part of the identified set if the functional θ

is continuous in the sense that ε 7→ θ(εF Y1|W + (1 − ε)F Y1|W ) is continuous. This type of

continuity is implied by the continuity of the mapping F 7→ θ(F ) under the sup-distance

metric.

Assuming monotonicity of the parameter will help derive properties of its identified set.

Monotonicity is a substantive restriction, but all eleven parameters from Section 2 satisfy

it. This is formally established in Lemma 3 below. We begin by considering monotonic

parameters that do not depend on copulas.

Theorem 3. Let θ(FY1|W , FY0|W , FY,X,W ) be increasing in FY1|W (· | w) and decreasing in

FY0|W (· | w) for each w ∈ supp(W ). Let Assumption 1 hold, and either Assumption 2 or 3

hold. Then, for i ∈ {marg, joint} the convex hull of the identified set for θ(FY1|W , FY0|W , FY,X,W )
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is the closed interval

I i
θ(FY,X,W ; c) =

[
inf

(F1,F0,C)∈Ii
0(FY,X,W ;c)

θ(F1, F0, FY,X,W ), sup
(F1,F0,C)∈Ii

0(FY,X,W ;c)

θ(F1, F0, FY,X,W )

]
=
[
θ(F Y1|W , F Y0|W , FY,X,W ), θ(F Y1|W , F Y0|W , FY,X,W )

]
.

If (ε, γ) 7→ θ(εF Y1|W + (1 − ε)F Y1|W , γF Y0|W + (1 − γ)F Y0|W , FY,X,W ) is continuous over

(ε, γ) ∈ [0, 1]2, this interval equals the identified set.

This theorem shows that substituting the upper/lower cdf bounds delivers sharp bounds

for any parameter that is monotonic in the first-order stochastic dominance sense. The result

is derived under an assumption that the parameter is increasing in FY1|W and decreasing in

FY0|W , but it immediately generalizes to parameters that are increasing or decreasing in either

or both conditional cdfs. For example, the cdf pair (F Y1|W , F Y0|W ) will maximize a parameter

that is decreasing in FY1|W and increasing in FY0|W , and the cdf pair (F Y1|W , F Y0|W ) will

maximize (minimize) a parameter that is decreasing (increasing) in both FY1|W and FY0|W .

The identified set for these parameters always contains endpoints θ(F Y1|W , F Y0|W , FY,X,W )

and θ(F Y1|W , F Y0|W , FY,X,W ). It also contains all the values between these endpoints whenever

the mapping θ is continuous in the appropriate sense.

We document the monotonicity of various building blocks for parameters of interest in

the following technical lemma. We omit covariates W for simplicity here, except in part 4

on QCATE because that parameter requires covariates to be nontrivial.

Lemma 3. Let Assumption 1 hold. Then, for x ∈ {0, 1} and τ ∈ (0, 1),

1. θE(FYx) :=
∫
y dFYx(y) is increasing and continuous in the sense that ε 7→ θE(εFYx +

(1− ε)F ′
Yx
) is continuous for any (FYx , F

′
Yx
) over ε ∈ [0, 1].

2. θQ(FYx ; τ) := F−1
Yx

(τ) is increasing.

3. θCQ(FYx ; τ) := F−1
Yx|X(τ | 1− x) is increasing.

4. θQCATE(FY1|W , FY0|W , FW ; τ) (see Example 7) is decreasing in FY1|W and increasing in

FY0|W .

5. θCDF(FY1 , FY0 , C; y1, y0) := C(FY1(y0), FY0(y0)) is decreasing in FY1 and FY0 for all

(y1, y0) ∈ R2 and copulas C.

6. θDTE(FY1 , FY0 , C; z) :=
∫
{y1−y0≤z} dC(FY1(y1), FY0(y0)) is decreasing in FY1 and increas-

ing in FY0 for all z ∈ R and copulas C.
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Using this lemma, all eight parameters that are invariant to copulas are bounded by

substituting the upper or lower cdf bounds from Theorem 2. This allows us to compute

analytical bounds for these parameters.

5 Analytical Bounds on Treatment Effect Parameters

We explore these analytical bounds by focusing on five of our examples to illustrate these

expressions. The first three parameters are independent from the copula, while the last two

are copula-dependent.

5.1 Average Treatment Effects (Example 3)

From Lemma 3.1, we have that the ATE satisfies

E[Y1 − Y0] = θATE(FY1|W , FY0|W , FW ) ∈ [θATE(F Y1|W , F Y0|W , FW ), θATE(F Y1|W , F Y0|W , FW )].

This interval equals the identified set by the monotonicity and continuity of the expectation

functional which was established in Lemma 3.1. The lower and upper bounds can be obtained

by calculating
∫
y dF Yx|W (y | w) and

∫
y dF Yx|W (y | w) for x ∈ {0, 1}. Via the quantile

transformation, these bounds can also be written as integrals of Q
Yx|W

(u | w) and QYx|W (u |
w) over u ∈ (0, 1). Thus the ATE bounds can be written as integrals of quantiles. Via Lemma

14 in Appendix E, we show that these quantile integrals can be converted into conditional

expectations of outcomes given that they exceed or fall short of a fixed conditional quantile.

These are equivalent to Conditional Value at Risk (CVaR) measures that appear in Dorn

et al. (2024). These bounds are stated explicitly in equations (52)–(55) in Appendix E in

the general case. When Y | X,W is continuously distributed, we obtain simpler expressions

for these bounds that we give here:

θATE(F Y1|W , F Y0|W , FW ) = E
[(

E[Y | Y ≤ Q1, X = 1,W ]− E[Y | Y ≤ Q
0
, X = 0,W ]

) c− p1|W
c− c

]
+ E

[(
E[Y | Y > Q1, X = 1,W ]− E[Y | Y > Q

0
, X = 0,W ]

) p1|W − c

c− c

]
and

θATE(F Y1|W , F Y0|W , FW ) = E
[(

E[Y | Y ≤ Q
1
, X = 1,W ]− E[Y | Y ≤ Q0, X = 0,W ]

) p1|W − c

c− c

]
+ E

[(
E[Y | Y > Q

1
, X = 1,W ]− E[Y | Y > Q0, X = 0,W ]

) c− p1|W
c− c

]
.
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Note that the dependence of (c, c) on (W, η) was suppressed for convenience.

5.2 Quantile Treatment Effects (Example 5)

We now consider bounds on the quantile treatment effect for a fixed quantile τ ∈ (0, 1). By

Lemma 3.2, the functional θQTE is increasing in FY1|W and decreasing in FY0|W . Therefore,

by Theorem 3, QTE(τ) has the following sharp bounds:

QTE(τ) ∈
[
Q

Y1
(τ)−QY0

(τ), QY1
(τ)−Q

Y0
(τ)
]

where QYx
is the left-inverse of cdf F Yx

(·) := E[F Yx|W (· | W )] for x ∈ {0, 1}. Analogously,

Q
Yx

is the left-inverse of cdf F Yx(·) := E[F Yx|W (· | W )]. Analytical expressions for the

unconditional cdf bounds for the treated potential outcome are given by

F Y1(y) = E
[
min

{
FY |X,W (y | 1,W )

p1|W
c

,
c− p1|W

c
+ FY |X,W (y | 1,W )

p1|W
c

}]
F Y1

(y) = E
[
max

{
FY |X,W (y | 1,W )

p1|W
c

,
c− p1|W

c
+ FY |X,W (y | 1,W )

p1|W
c

}]
and similar expressions can be obtained for Y0. The left-inverses of the previous expressions

yield bounds on quantiles of Y1 and Y0, and which can be used to compute the QTE bounds.

5.3 Average Weighted Welfare (Example 8)

Consider a policy ω : supp(W ) → [0, 1] that treats units with covariate value w with proba-

bility ω(w). The average welfare in a population under such policy is given by

AWW(ω) = θAWW(FY1|W , FY0|W , FW , ω) = E[ω(W )E[Y1 | W ] + (1− ω(W ))E[Y0 | W ]].

By adapting Lemma 3.1, this functional is increasing in FY1|W , increasing in FY0|W , and

continuous in the sense defined in the lemma. Therefore, by Theorem 3, its identified set is

the closed interval given by

[
θAWW(F Y1|W , F Y0|W , FW , ω), θAWW(F Y1|W , F Y0|W , FW , ω)

]
.

An analytical expression for these bounds can be obtained by substituting in the expressions

for the cdf bounds in the previous functionals. When Y | X,W is continuously distributed,
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the bounds are given by

θAWW(F Y1|W , F Y0|W , FW , ω)

= E
[
ω(W )

(
E[Y | Y ≤ Q1, X = 1,W ]

c− p1|W
c− c

+ E[Y | Y > Q1, X = 1,W ]
p1|W − c

c− c

)]
+ E

[
(1− ω(W ))

(
E[Y | Y ≤ Q0, X = 0,W ]

p1|W − c

c− c
+ E[Y | Y > Q0, X = 0,W ]

c− p1|W
c− c

)]
and

θAWW(F Y1|W , F Y0|W , FW , ω)

= E
[
ω(W )

(
E[Y | Y ≤ Q

1
, X = 1,W ]

p1|W − c

c− c
+ E[Y | Y > Q

1
, X = 1,W ]

c− p1|W
c− c

)]
+ E

[
(1− ω(W ))

(
E[Y | Y ≤ Q

0
, X = 0,W ]

c− p1|W
c− c

+ E[Y | Y > Q
0
, X = 0,W ]

p1|W − c

c− c

)]
.

5.4 Copula-Dependent Parameters

We now consider identification of the parameters in examples 9–11 which all depend on the

copulas C1,0|X,W . Even under unconfoundedness these parameters are not point-identified.

Relaxing unconfoundedness will yield larger identified sets for these parameters when com-

pared to the unconfoundedness baseline. We will focus on marginal c-dependence since it

does not restrict the dependence structure between the potential outcomes.

The Joint Distribution Function

Consider identification of the joint cdf FY1,Y0(y1, y0) under marginal c-dependence. Consider

the functional

θCDF(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; y1, y0)

:=

∫ (
C1,0|X,W (FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w) | 1, w)p1|w

+ C1,0|X,W (FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)|0, w)p0|w
)
dFW (w).

Fix the conditional copula function C1,0|X,W (·, · | ·, ·). Then by Lemma 3.4, this functional

is decreasing in FY0|X,W (y0 | 1, w) and FY1|X,W (y1 | 0, w). Thus it is bounded below by

θCDF(F Y1|X,W , F Y0|X,W , C1,0|X,W , FY,X,W ; y1, y0)
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and above by

θCDF(F Y1|X,W , F Y0|X,W , C1,0|X,W , FY,X,W ; y1, y0).

Moreover, by Theorem 3, these bounds are sharp.

Since C1,0|X,W is unknown, we then compute the maximum and minimum of these bounds

over the set of copulas that are consistent with marginal c-dependence; this is simply the set

of all copulas. The Fréchet-Hoeffding bounds show that all copulas C satisfy

C(u, v) ∈ [max{u+ v − 1, 0},min{u, v}] =: [C(u, v), C(u, v)]

for all (u, v) ∈ [0, 1]2. The copula bounds C and C are themselves copulas. Combining these

facts, we obtain the following analytical bounds on the joint cdf of potential outcomes.

Proposition 2 (Identified set for joint cdf). Let assumptions 1 and 2 hold. Then, for any

(y1, y0) ∈ R2, the identified set for FY1,Y0(y1, y0) is given by the closed interval

Imarg
θCDF

(FY,X,W ; c) =
[
E
(
max{F Y1|X,W (y1 | X,W ) + F Y0|X,W (y0 | X,W )− 1, 0}

)
,

E
(
min{F Y1|X,W (y1 | X,W ), F Y0|X,W (y0 | X,W )}

)]
.
(7)

The bounds in (7) are themselves cdfs, so these bounds can be attained simultaneously

for all (y1, y0) ∈ R2. The bounds for FY1,Y0 under unconfoundedness are obtained as a special

case when c = p1|W = c, which implies that F Yx|X,W = F Yx|X,W = FY |X,W (· | x, ·). Making

this substitution in equation (7) yields these bounds under unconfoundedness.

The Distribution of Treatment Effects

Identification of this parameter under unconfoundedness was studied in Fan and Park (2010),

by applying results first shown in Makarov (1982) and later studied in Williamson and

Downs (1990). Masten and Poirier (2020) also studied this parameter under conditional

c-dependence and under a range of assumptions on copulas for (Y1, Y0). By Lemma 2.1 in

Fan and Park (2010), the cdf of Y1 − Y0 given (X,W ) = (x,w) satisfies

FY1−Y0|X,W (z | x,w) ∈
[
max

{
sup
y∈R

(
FY1|X,W (y | x,w)− FY0|X,W (y − z | x,w)

)
, 0

}
,

1 + min

{
inf
y∈R

(
FY1|X,W (y | x,w)− FY0|X,W (y − z | x,w)

)
, 0

}]
and these bounds are sharp for any pair of cdfs (FY1|X,W , FY0|X,W ). These bounds are decreas-

ing in FY1|X,W and increasing in FY0|X,W , therefore substituting the upper/lower cdf bounds
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for FYx|X,W results in sharp bounds for FY1−Y0|X,W under c-dependence. This was established

in Lemma 3.6. Integrating these bounds over the marginal distribution of (X,W ) yields

sharp bounds for the unconditional cdf of Y1−Y0. This result is summarized in the following

proposition.

Proposition 3 (Identified set for DTE). Let assumptions 1 and 2 hold. For any z ∈ R, the
convex hull of the identified set for FY1−Y0(z) is given by

Imarg
θDTE

(FY,X,W ; c) =

[
E
(
max

{
sup
y∈R

(
F Y1|X,W (y | X,W )− F Y0|X,W (y − z | X,W )

)
, 0

})
,

1 + E
(
min

{
inf
y∈R

(
F Y1|X,W (y | X,W )− F Y0|X,W (y − z | X,W )

)
, 0

})]
.

This expression involves two one-dimensional optimization problems, but the objective

functions are known, closed-form functionals of the distribution of the observables. Bounds

on the QDTE can be obtained as a corollary by taking the left-inverse of the cdf bounds.

6 Conclusion

In this paper we proposed a general class of relaxations of unconfoundedness, and showed

how it includes several previous approaches as special cases. We then derived closed form

identification results for many different target parameters under this general class of re-

laxations. There are at least three natural next steps. First, in this paper we focused on

population level identification results. Corresponding estimation and inference results can

likely be derived by using standard sample analog estimators and arguments, but we leave the

details to future work. Second, it would be interesting to explore whether our bounds have

either the double-sharpness or double-validity properties defined in Dorn et al. (2024), and if

not, whether alternative bounds that had these properties could be derived. Third, it would

be interesting to extend our results to independence assumptions beyond unconfoundedness,

such as IV exogeneity (e.g., section 4 of Masten and Poirier 2018b).
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A Bound Expressions

In this section we summarize all the bounds that will be used in the proofs of lemmas and main results. These
expressions are given for an arbitrary values of (y, w) ∈ R× supp(W ). Denote c := c(w, η) and c := c(w, η),
where the dependence on w and η is implicitly understood.

A.1 Lower bound on Y1

Let

τ1 =
(p1|w − c)c

p1|w(c− c)
and Q

1
= QY |X,W (τ1 | 1, w)

and

FY1|W (y | w) = max

{
FY |X,W (y | 1, w)

p1|w

c
,
c− p1|w

c
+ FY |X,W (y | 1, w)

p1|w

c

}
= FY |X,W (y | 1, w)

p1|w

c
1

(
y < Q

1

)
+

(
c− p1|w

c
+ FY |X,W (y | 1, w)

p1|w

c

)
1

(
y ≥ Q

1

)

FY1|X,W (y | 0, w) = max

{
FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc
,
c− p1|w

cp0|w
+ FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc

}
= FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc
1

(
y < Q

1

)
+

(
c− p1|w

cp0|w
+ FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc

)
1

(
y ≥ Q

1

)
FY1|X,W (y | 1, w) = FY |X,W (y | 1, w).

Define
p
1
(y, w) = c1(y < Q

1
) +A11(y = Q

1
) + c1(y > Q

1
)

where

A1 =
P(Y = Q

1
, X = 1 | W = w)(

c−p1|w
c + FY |X,W (Q

1
| 1, w)p1|w

c

)
− p1|w

c P(Y < Q
1
| X = 1,W = w)

.

If the denominator is 0, set A1 = p1|w. We can also derive the associated quantiles function bounds for
τ ∈ (0, 1):

QY1|W (τ | w) := F−1
Y1|W (τ | w) = QY |X,W

(
min

{
c

p1|w
τ,

p1|w − c

p1|w
+

c

p1|w
τ

}
| 1, w

)

QY1|X,W (τ | 0, w) := F−1
Y1|X(τ | 0, w) = QY |X,W

(
min

{
cp0|w

p1|w(1− c)
τ,

p1|w − c

p1|w(1− c)
+

cp0|w

p1|w(1− c)
τ

}
| 1, w

)
.

A.2 Upper bound on Y1

Let
τ1 = 1− τ1 and Q1 = QY |X,W (τ1 | 1, w)
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and

FY1|W (y | w) = min

{
FY |X,W (y | 1, w)

p1|w

c
,
c− p1|w

c
+ FY |X,W (y | 1, w)

p1|w

c

}
= FY |X,W (y | 1, w)

p1|w

c
1
(
y < Q1

)
+

(
c− p1|w

c
+ FY |X,W (y | 1, w)

p1|w

c

)
1
(
y ≥ Q1

)
FY1|X,W (y | 0, w) = min

{
FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc
,
c− p1|w

cp0|w
+ FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc

}
= FY |X,W (y | 1, w)

p1|w(1− c)

(1− p1|w)c
1
(
y < Q1

)
+

(
c− p1|w

cp0|w
+ FY |X(y | 1)

p1|w(1− c)

p0|wc

)
1
(
y ≥ Q1

)
FY1|X,W (y | 1, w) = FY |X,W (y | 1, w).

Define

p1(y, w) = c1(y < Q1) +A11(y = Q1) + c1(y > Q1)

where

A1 =
P(Y = Q1, X = 1 | W = w)(

c−p1|w
c + FY |X,W (Q1 | 1, w)p1|w

c

)
− p1|w

c P(Y < Q1 | X = 1,W = w)
.

If the denominator is 0, set A1 = p1|w. We can also derive the associated quantiles function bounds for
τ ∈ (0, 1):

Q
Y1|W

(τ | w) := F
−1

Y1|W (τ | w) = QY |X,W

(
max

{
c

p1|w
τ,

p1|w − c

p1|w
+

c

p1|w
τ

}
| 1, w

)

Q
Y1|X,W

(τ | 0, w) := F
−1

Y1|X,W (τ | 0, w) = QY |X,W

(
max

{
cp0|w

p1|w(1− c)
τ,

p1|w − c

p1|w(1− c)
+

cp0|w

p1|w(1− c)
τ

}
| 1, w

)
.

A.3 Lower Bound on Y0

Under c-dependence, we have that P(X = 0 | Y0,W = w) = 1 − P(X = 1 | Y0,W = w) ∈ [1 − c(w, η), 1 −
c(w, η)]. So we can take the bound expressions for FY1|W , swap p1|w and p0|w, and swap (c, c) and (1−c, 1−c)
and get the correct expressions for the bounds for FY0|W . Here are all the expressions.

Let

τ0 =
(c− p1|w)(1− c)

p0|w(c− c)
and Q

0
= QY |X,W (τ0|0, w)
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and

FY0|W (y | w) = max

{
FY |X,W (y | 0, w)

p0|w

1− c
,
p1|w − c

1− c
+ FY |X,W (y | 0, w)

p0|w

1− c

}
= FY |X,W (y | 0, w)

p0|w

1− c
1

(
y < Q

0

)
+

(
p1|w − c

1− c
+ FY |X,W (y | 0, w)

p0|w

1− c

)
1

(
y ≥ Q

0

)

FY0|X,W (y | 1, w) = max

{
FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)
,

p1|w − c

(1− c)p1|w
+ FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)

}
= FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)
1

(
y < Q

0

)
+

(
p1|w − c

(1− c)p1|w
+ FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)

)
1

(
y ≥ Q

0

)
FY0|X,W (y | 0, w) = FY |X(y | 0, w).

Define
p
0
(y, w) = c1(y < Q

0
) + (1−A0)1(y = Q

0
) + c1(y > Q

0
)

where

A0 =
p0|w(FY |X,W (Q

0
|0, w)− FY |X,W (Q

0
− |0, w))

FY0|W (Q
0
|w)− FY0|W (Q

0
− |w)

.

If the denominator is 0, set A0 = p0|w. We can also derive the associated quantiles function bounds for
τ ∈ (0, 1):

QY0|W (τ | w) := F−1
Y0|W (τ) = QY |X,W

(
min

{
1− c

p0|w
τ,

p0|w − (1− c)

p0|w
+

1− c

p0|w
τ

}
| 0, w

)
QY0|X,W (τ | 1, w) := F−1

Y0|X(τ | 1) = QY |X,W

(
min

{
(1− c)p1|w

p0|wc
τ,

p0|w − (1− c)

p0|wc
+

p1|w(1− c)

p0|wc
τ

}
| 0, w

)
.

A.4 Upper bound for Y0

Let

τ0 = 1− τ0 and Q0 = QY |X,W (τ0|0, w)

and

FY0|W (y | w) = min

{
FY |X,W (y | 0, w)

p0|w

1− c
,
p1|w − c

1− c
+ FY |X,W (y | 0, w)

p0|w

1− c

}
= FY |X,W (y | 0, w)

p0|w

1− c
1
(
y < Q0

)
+

(
p1|w − c

1− c
+ FY |X,W (y | 0, w)

p0|w

1− c

)
1
(
y ≥ Q0

)
FY0|X,W (y | 1, w) = min

{
FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)
,

p1|w − c

(1− c)p1|w
+ FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)

}
= FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)
1
(
y < Q0

)
+

(
p1|w − c

(1− c)p1|w
+ FY |X,W (y | 0, w)

p0|wc

p1|w(1− c)

)
1
(
y ≥ Q0

)
.

Define

p0(y, w) = c1(y < Q0) + (1−A0)1(y = Q0) + c1(y > Q0)
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where

A0 =
P(Y = Q0, X = 0 | W = w)(

p1|w−c

1−c + FY |X,W (Q0|0, w)
p0|w
1−c

)
− p0|w

1−c P(Y < Q0 | X = 0,W = w)
.

If the denominator is 0, set A0 = p0|w. We can also derive the associated quantiles function bounds for
τ ∈ (0, 1):

Q
Y0|W

(τ | w) := F
−1

Y0|W (τ | w) = QY |X,W

(
max

{
1− c

p0|w
τ,

p0|w − (1− c)

p0|w
+

1− c

p0|w
τ

}
| 0, w

)

Q
Y0|X,W

(τ | 1, w) := F
−1

Y0|X,W (τ | 1, w) = QY |X,W

(
max

{
(1− c)p1|w

p0|wc
τ,

p0|w − (1− c)

p0|wc
+

(1− c)p1|w

p0|wc
τ

}
| 0, w

)
.

B Proofs for Section 3

Proof of Lemma 1. Let x ∈ {0, 1} and fix w ∈ supp(W ). By the law of iterated expectations, E[X | Yx,W =
w] = E[E[X | Y1, Y0,W = w] | Yx,W = w]. Since E[X | Y1, Y0,W = w] ∈ [c(w, η), c(w, η)] almost surely, we
then have that E[X | Yx,W = w] ∈ [c(w, η), c(w, η)] almost surely as well.

Proof of Proposition 1. Part 1: Suppose marginal c-dependence holds with bound functions [c(w, η), c(w, η)].
Fix (x,w) ∈ {0, 1} × supp(W ). We have that

Rx(Yx, w) =
px(Yx, w)

1− px(Yx, w)

/ p1|w

1− p1|w
∈
[

c(w, η)

1− c(w, η)

/ p1|w

1− p1|w
,

c(w, η)

1− c(w, η)

/ p1|w

1− p1|w

]
, (8)

where the inclusion holds from the mapping a 7→ a/(1− a) being strictly increasing over a ∈ (0, 1) and from
px(Yx, w) ∈ [c(w, η), c(w, η)] ⊂ (0, 1) almost surely. We note that

c(w, η)

1− c(w, η)

/ p1|w

1− p1|w
∈
[

p1|w

1− p1|w

/ p1|w

1− p1|w
,+∞

)
= [1,+∞)

where the inclusion holds from c(w, η) ∈ [p1|w, 1). Similarly,

c(w, η)

1− c(w, η)

/ p1|w

1− p1|w
∈
(

0

1− 0

/ p1|w

1− p1|w
,

p1|w

1− p1|w

/ p1|w

1− p1|w

]
= (0, 1]

from c(w, η) ∈ (0, p1|w]. We conclude that the GMSM holds with the bound functions from equation (4).
Replacing marginal c-dependence with joint c-dependence delivers the same bounds for the GJSM.

Part 2: Suppose the GMSM holds with bound functions
[
Λ(w, η),Λ(w, η)

]
. Fix (x,w) ∈ {0, 1} ×

supp(W ). We have that

px(Yx, w) =
p1|wRx(Yx, w)

p0|w + p1|wRx(Yx, w)
∈

[
p1|wΛ(w, η)

p0|w + p1|wΛ(w, η)
,

p1|wΛ(w, η)

p0|w + p1|wΛ(w, η)

]
. (9)

The equality holds from inverting the equation Rx(Yx, w) =
px(Yx,w)

1−px(Yx,w)

/
p1|w

1−p1|w
in px(Yx, w). The inclusion

holds from the mapping a 7→ a/(1 + a) being strictly increasing for a ∈ [0,+∞) and from Rx(Yx, w) ∈[
Λ(w, η),Λ(w, η)

]
⊂ (0,+∞) almost surely. We note that

p1|wΛ(w, η)

p0|w + p1|wΛ(w, η)
∈
(

p1|w · 0
p0|w + p1|w · 0

,
p1|w · 1

p0|w + p1|w · 1

]
= (0, p1|w]
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by Λ(w, η) ∈ (0, 1]. Similarly,

p1|wΛ(w, η)

p0|w + p1|wΛ(w, η)
∈
[

p1|w · 1
p0|w + p1|w · 1

, 1

)
= [p1|w, 1)

by Λ(w, η) ∈ [1,+∞]. We conclude that marginal c-dependence holds with the bound functions from equation
(1). Replacing the GMSM with the GJSM delivers the same bounds for joint c-dependence.

C Proofs for Section 4

Proof of Lemma 2. By Lemma 1, it suffices to show the desired results under Assumption 2. Let y ∈ R and
w ∈ supp(W ) be fixed. Note that

E
[
1(Y ≤ y)

p1(Y,w)
| X = 1,W = w

]
p1|w = E

[
1(Y1 ≤ y)X

p1(Y1, w)
|W = w

]
= E

[
1(Y1 ≤ y)E[X | Y1,W = w]

p1(Y1, w)
|W = w

]
= E [1(Y1 ≤ y)|W = w]

= FY1|W (y | w),

where the second equality follows from the law of iterated expectations and the third from p1(Y1, w) ≥
c(w, η) > 0 almost surely by Assumption 2. Likewise, we have

E
[
1(Y > y)

p1(Y,w)
| X = 1,W = w

]
p1|w = 1− FY1|W (y | w).

Therefore,

FY1|W (y | w) = E
[
1(Y ≤ y)

p1(Y,w)
| X = 1,W = w

]
p1|w

≤ E
[
1(Y ≤ y)

c(w, η)
| X = 1,W = w

]
p1|w

= FY |X,W (y | 1, w)
p1|w

c(w, η)

and

FY1|W (y | w) = 1− P(Y1 > y | W = w)

= 1− E
[
1(Y > y)

p1(Y,w)
| X = 1,W = w

]
p1|w

≤ 1− E
[
1(Y > y)

c(w, η)
| X = 1,W = w

]
p1|w

=
c(w, η)− p1|w

c(w, η)
+ FY |X,W (y | 1, w)

p1|w

c(w, η)
.

The inequalities follow from p1(Y1, w)
−1 ∈ [c(w, η)−1, c(w, η)−1] almost surely. By these two inequalities,

FY1|W (y | w) ≤ min

{
FY |X,W (y | 1, w)

p1|w

c(w, η)
,
c(w, η)− p1|w

c(w, η)
+ FY |X,W (y | 1, w)

p1|w

c(w, η)

}
= FY1|W (y | w).
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Similarly,

FY1|W (y | w) = E
[
1(Y ≤ y)

p1(Y,w)
| X = 1,W = w

]
p1|w

≥ E
[
1(Y ≤ y)

c(w, η)
| X = 1,W = w

]
p1|w

= FY |X,W (y | 1, w)
p1|w

c(w, η)

and

FY1|W (y | w) = 1− P(Y1 > y | W = w)

= 1− E
[
1(Y > y)

p1(Y,w)
| X = 1,W

]
p1|w

≥ 1− E
[
1(Y > y)

c(w, η)
| X = 1,W = w

]
p1|w

=
c(w, η)− p1|w

c(w, η)
+ FY |X,W (y | 1, w)

p1|w

c(w, η)
.

By these two inequalities,

FY1|W (y | w) ≥ max

{
FY |X,W (y | 1, w)

p1|W

c(w, η)
,
c(w, η)− p1|w

c(w, η)
+ FY |X,W (y | 1, w)

p1|w

c(w, η)

}
= FY1|W (y | w).

Therefore we have established FY1|W (y | w) ∈ [FY1|W (y | w), FY1|W (y | w)], as desired.
Next we establish the bounds for FY0|W (y | w). We also have that

E
[

1(Y ≤ y)

1− p0(Y,w)
| X = 0,W = w

]
p0|w = FY0|W (y | w).

Furthermore, note that E[(1−X) | Y0,W = w] = P(X = 0 | Y0,W = w) ∈ [1−c(w, η), 1−c(w, η)]. Changing
X = 1 to X = 0, and (c(w, η), c(w, η)) to (1− c(w, η), 1− c(w, η)) yields

FY0|W (y | w) ≤ FY |X,W (y | 0, w)
p0|w

1− c(w, η)

FY0|W (y | w) ≤
p1|w − c(w, η)

1− c(w, η)
+ FY |X,W (y | 0, w)

p0|w

1− c(w, η)

FY0|W (y | w) ≥ FY |X,W (y | 0, w)
p0|w

1− c(w, η)

FY0|W (y | w) ≥
p1|w − c(w, η)

1− c(w, η)
+ FY |X(y | 0)

p0|w

1− c(w, η)
.

almost surely. Therefore, FY0|W (y | w) ∈ [FY0|W (y | w), FY0|W (y | w)].

C.1 Proof of Theorem 1

We provide and show a number of preliminary lemmas that are used to prove Theorem 1. This first lemma
establishes some properties of cdf bounds for Yx given (X,W ).

Lemma 4 (Bounds of CDFs). Let assumptions 1 and 2 hold. Then, for x ∈ {0, 1} and w ∈ supp(W ),

1. The functions FYx|X,w(· | 1 − x,w) and FYx|X,W (· | 1 − x,w), which are defined in Appendix A, are
cdfs;
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2. For all y ∈ R,

FYx|X,W (y | 1− x,w)p1−x|w + FY |X,W (Y | X,w)px|w = FYx|W (y | w)

FYx|X,W (y | 1− x,w)p1−x|w + FY |X,W (Y | X,w)px|w = FYx|W (y | w).

Proof of Lemma 4. Proof of Part 1: We show that FY1|X,W (y | 0, w) is a cdf by showing it is nondecreasing,
has limits (0, 1) when y approaches (−∞,+∞), and is right-continuous. The same arguments can be used
to deduce that FY1|X,W (y | 0, w), FY0|X,W (y | 1, w), and FY0|X,W (y | 1, w) are also cdfs.

The function

FY1|X,W (y | 0, w) = max

{
FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc
,
c− p1|w

cp0|w
+ FY |X,W (y | 1, w)

p1|w(1− c)

cp0|w

}
is nondecreasing in y since each of its two arguments is nondecreasing in y, due to FY |X,W (· | 1, w) being a
cdf. Then note that

lim
y→∞

FY1|X,W (y | 0, w) = max

{
p1|w(1− c)

p0|wc
, 1

}
= max

{
p1|w − p1|wc

c− p1|wc
, 1

}
= 1,

where the last equality follows by p1|w ≤ c. Also note that

lim
y→−∞

FY1|X,W (y | 0, w) = max

{
0,

c− p1|w

cp0|w

}
= 0,

where the last equality follows by c ≤ p1|w. Finally, we can see that FY1|X,W (y | 0, w) is right-continuous
with respect to y since FY |X(y | 1, w) is right-continuous and by the continuity of affine transformations and
of the maximum function. Therefore, FY1|X,W (y | 0, w) is a cdf.

Proof of Part 2: We show the first equality with x = 1, and the same arguments can be used to establish
the equality for other cases. For y ∈ R, the desired result follows by the following derivations:

FY1|X,W (y | 0, w)p0|w + FY |X,W (y | 1, w)p1|w

= max

{
FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc
,
c− p1|w

cp0|w
+ FY |X,W (y | 1, w)

p1|w(1− c)

p0|wc

}
p0|w + FY |X,W (y | 1, w)p1|w

= max

{
FY |X,W (y | 1, w)p1|w

(
1− c

c
+ 1

)
,
c− p1|w

c
+ FY |X,W (y | 1, w)p1|w

(
1− c

c
+ 1

)}
= max

{
FY |X,W (y | 1, w)p1|w

c
,
c− p1|w

c
+

FY |X,W (y | 1, w)p1|w
c

}
= FY1|W (y | w).

Thus the proof is complete.

Lemma 5. Let x ∈ {0, 1} and w ∈ supp(W ). Suppose m(·) is a Borel measurable function and P(m(Yx) ≥
δ|W = w) = 1 for some δ > 0. The following statements are equivalent:

1. Conditional on W = w, the following statement holds almost surely:

m(Yx) = P(X = x | Yx,W = w). (10)

2. For all y ∈ R, the following equality holds:

E
[
1(Yx ≤ y)1(X = x)

m(Yx)
|W = w

]
= P(Yx ≤ y | W = w). (11)
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Proof of Lemma 5. We first prove that (10) implies (11). This follows from the law of iterated expectations:

E
[
1(Yx ≤ y)1(X = x)

m(Yx)
| W = w

]
= E

[
1(Yx ≤ y)E[1(X = x) | Yx,W = w]

m(Yx)
| W = w

]
= E

[
1(Yx ≤ y)P(X = x | Yx,W = w)

m(Yx)
| W = w

]
= E[1(Yx ≤ y) | W = w]

= P(Yx ≤ y | W = w),

where we use (10) and the assumption m(Yx) ≥ δ > 0 for the third equality.
Next, we prove that (11) implies (10). To show this result, we first establish a few key facts:

1. By the law of iterated expectations, (11) implies

E
[
1(Yx ≤ y)

P(X = x | Yx,W = w)−m(Yx)

m(Yx)
|W = w

]
= 0

for all y ∈ R2.

2. For y ∈ R, define the preimage from a half-space on R2 as

Iy = {ω ∈ Ω : Yx(ω) ≤ y},

where Ω denotes Yx’s sample space. Let A = {Iy : y ∈ R}. We then note that A is closed under
intersection since

Iy ∩ Iy′ = Imin{y,y′} ∈ A for any y, y′ ∈ R.

This, combined with the non-emptyness of A, implies that A is a π-system.

3. The sample space can be written as a countable union of sets in A since

Ω = {ω ∈ Ω : Yx(ω) < ∞} =

∞⋃
n=1

In.

4. The random variable [P(X = x | Yx,W = w) − m(Yx)]/m(Yx) is measurable with respect to the
σ-algebra generated by Yx due to the Borel measurability of m(·), and it is integrable since∣∣∣∣P(X = x | Yx,W = w)−m(Yx)

m(Yx)

∣∣∣∣ ≤ P(X = x | Yx,W = w)

m(Yx)
+ 1 ≤ 1

δ
+ 1 < +∞,

where the first inequality follows by trangle inequality, and the second inequality follows by the
assumption that m(Yx) ≥ δ > 0 almost surely.

Given the above facts, it follows by Billingsley (1995, Theorem 34.1) that

P(X = x|Yx,W = w)−m(Yx)

m(Yx)
= 0 with probability one conditional on W = w.

From this equality we conclude that P(X = x | Yx,W = w) = m(Yx) with probability one conditional on
W = w since m(Yx) ≥ δ > 0 almost surely. So the desired result has been established.

The following lemma is a subset of Lemma 21.1 in van der Vaart (2000), so we omit its proof.

Lemma 6 (Properties of CDFs and Quantiles). Let p ∈ (0, 1) and x ∈ R. Let F be a cdf and Q(p) =
inf{z ∈ R : F (z) ≥ p} be its quantile function. Then,

1. Q(p) ≤ x if and only if p ≤ F (x);

2. F (Q(p)) ≥ p where equality can fail only if F is discontinuous at Q(p);
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3. F (Q(p)−) ≤ p.

This next lemma is a compendium of properties of the cdf bounds. Its results are used throughout our
proofs for the main theorems.

Lemma 7 (Preliminary Results). Let w ∈ supp(W ) and suppose assumptions 1 and 2 hold with c(w, η) <
p1|w < c(w, η). Then, for x ∈ {0, 1},

1. τx, τx ∈ (0, 1);

2. FYx|W (y | w) is continuous at y = Qx if and only if P(Y = Qx | X = x,W = w) = 0, and FYx|W (y | w)
is continuous at y = Q

x
if and only if P(Y = Q

x
| X = x,W = w) = 0;

3. A1, A1, 1−A0, 1−A0 ∈ [c, c];

4. px(Yx, w), px(Yx, w) ∈ [c, c] almost surely;

5. For all y ∈ R,

E

[
1(Y ≤ y)X

p
1
(Y,w)

|W = w

]
= FY1|W (y | w) and E

[
1(Y ≤ y)X

p1(Y,w)
|W = w

]
= FY1|W (y | w),

E

[
1(Y ≤ y)(1−X)

1− p
0
(Y,w)

|W = w

]
= FY0|W (y | w) and E

[
1(Y ≤ y)(1−X)

1− p0(Y,w)
|W = w

]
= FY0|W (y | w).

6. For all (y1, y0) ∈ R2, the following inequalities are equivalent:

(a) FYx|W (yx|w) ≤ FY1−x|W (y1−x|w);
(b) FY |X,W (yx|x,w) ≤ FY1−x|X,W (y1−x|x,w);

(c) FYx|X,W (yx | 1− x,w) ≤ FY |X,W (y1−x | 1− x,w).

Also, the following inequalities are equivalent:

(d) FYx|W (yx|w) ≥ FY1−x|W (y1−x|w);
(e) FY |X,W (yx|x,w) ≥ FY1−x|X,W (y1−x|x,w);

(f) FYx|X,W (yx | 1− x,w) ≥ FY |X,W (y1−x | 1− x,w).

7. The following inequalities are equivalent:

(a) FY |X,W (Q1− | 1, w) ≤ FY0|X,W (Q
0
− | 1, w);

(b) FY1|X,W (Q1 − |0, w) ≤ FY |X,W (Q
0
− |0, w);

(c) FY1|W (Q1− | w) ≤ FY0|W (Q
0
− |w).

Also, the following inequalities are equivalent:

(d) FY |X,W (Q
1
− | 1, w) ≤ FY0|X,W (Q0− | 1, w);

(e) FY1|X,W (Q
1
− |0, w) ≤ FY |X,W (Q0 − |0, w);

(f) FY1|W (Q
1
− | w) ≤ FY0|W (Q0 − |w).

8. The following inequalities hold:

max
{
FY1|W (Q1− | w), FY0|W (Q

0
− |w)

}
≤

c− p1|w

c− c
≤ min

{
FY1|W (Q1 | w), FY0|W (Q

0
|w)
}

and

max
{
FY0|W (Q0 − |w), FY1|W (Q

1
− | w)

}
≤

p1|w − c

c− c
≤ min

{
FY0|W (Q0|w), FY1|W (Q

1
| w)

}
.
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9. The following inequalities hold:

max
{
FY |X,W (Q1− | 1, w), FY0|X,W (Q

0
− | 1, w)

}
≤ τ1 ≤ min

{
FY |X,W (Q1 | 1, w), FY0|X,W (Q

0
| 1, w)

}
and

max
{
FY0|X,W (Q0− | 1, w), FY |X,W (Q

1
− | 1, w)

}
≤ τ1 ≤ min

{
FY0|X,W (Q0 | 1, w), FY |X,W (Q

1
| 1, w)

}
.

10. For all (y1, y0) ∈ R2, the following inequalities are equivalent:

(a) FYx|W (yx|w) + FY1−x|W (y1−x|w) ≥ 1;

(b) FY |X,W (yx|x,w) + FY1−x|X,W (y1−x|x,w) ≥ 1;

(c) FYx|X,W (yx | 1− x,w) + FY |X,W (y1−x | 1− x,w) ≥ 1.

Also, the following inequalities are equivalent:

(d) FYx|W (yx|w) + FY1−x|W (y1−x|w) ≥ 1;

(e) FY |X,W (yx|x,w) + FY1−x|X,W (y1−x|x,w) ≥ 1;

(f) FYx|X,W (yx | 1− x,w) + FY |X,W (y1−x | 1− x,w) ≥ 1.

11. The following inequalities are equivalent:

(a) FY1|W (Q1 | w) + FY0|W (Q0 − |w) ≥ 1;

(b) FY |X,W (Q1 | 1, w) + FY0|X,W (Q0− | 1, w) ≥ 1;

(c) FY1|X,W (Q1|0, w) + FY |X,W (Q0 − |0, w) ≥ 1.

Also, the following inequalities are equivalent:

(d) FY1|W (Q1− | w) + FY0|W (Q0|w) ≥ 1;

(e) FY |X,W (Q1− | 1, w) + FY0|X,W (Q0 | 1, w) ≥ 1;

(f) FY1|X,W (Q1 − |0, w) + FY |X,W (Q0|0, w) ≥ 1.

Proof of Lemma 7. For brevity, we omit covariates w ∈ supp(W ) and drop notation referring on conditional
probability · | w and · | W = w from this proof. However, note that our arguments hold when conditioning
on W = w throughout.

Proof of Part 1: First consider τ1:

τ1 =
p1 − c

c− c

c

p1
=

p1c− cc

p1c− cp1
<

p1c− cc

p1c− cc
= 1,

where the inequality is strict because p1 < c and c > 0. Similarly,

τ1 =
p1 − c

c− c

c

p1
>

c− c

c− c

c

p1
= 0

where the inequality is strict because p1 > c and c > 0. Thus, τ1 ∈ (0, 1). Since τ1 = 1− τ1, τ1 ∈ (0, 1) as
well. The proofs for τ0 and τ0 are similar.

Proof of Part 2: First consider the statement involving Qx with x = 1. We show the following inequality

p1
c
P(Y = Q1 | X = 1) ≤ FY1

(Q1)− FY1
(Q1−) ≤ p1

c
P(Y = Q1 | X = 1). (12)
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From this inequality and Assumption 2 that 0 < c ≤ p1 ≤ c, we will conclude that FY1
(y) is continuous at

y = Q1 if and only if P(Y = Q1 | X = 1) = 0.
To show the lower bound inequality in (12), note that

FY1(Q1)− FY1(Q1−) =
c− p1

c
+ FY |X(Q1 | 1)p1

c
− p1

c
FY |X(Q1− | 1)

=
c− p1

c
− p1FY |X(QY |X(τ1 | 1)− | 1)c− c

cc
+

p1
c
P(Y = Q1 | X = 1)

≥ c− p1
c

− p1τ1
c− c

cc
+

p1
c
P(Y = Q1 | X = 1)

=
p1
c
P(Y = Q1 | X = 1),

The first line holds by the definition of FY1
. The third line holds by Lemma 6.3. The last line holds by the

definition of τ1.
Likewise, we also have the following derivation:

FY1
(Q1)− FY1

(Q1−) =
c− p1

c
+ FY |X(Q1 | 1)p1

c
− p1

c
FY |X(Q1− | 1)

=
c− p1

c
− p1FY |X(QY |X(τ1 | 1) | 1)c− c

cc
+

p1
c
P(Y = Q1 | X = 1)

≤ c− p1
c

− p1τ1
c− c

cc
+

p1
c
P(Y = Q1 | X = 1)

=
p1
c
P(Y = Q1 | X = 1),

where we use Lemma 6.2 in the third line. This establishes the upper bound inequality in (12). So the
desired result follows. The proofs for the statements involving Q

1
, Q0, and Q

0
are similar by establishing

the following bounds:

FY1
(Q

1
)− FY1

(Q
1
−) ∈

[
p1
c
P(Y = Q

1
| X = 1),

p1
c
P(Y = Q

1
| X = 1)

]
FY0

(Q0)− FY0
(Q0−) ∈

[
p0

1− c
P(Y = Q0 | X = 0),

p0
1− c

P(Y = Q0 | X = 0)

]
FY0

(Q
0
)− FY0

(Q
0
−) ∈

[
p0

1− c
P(Y = Q

0
| X = 0),

p0
1− c

P(Y = Q
0
| X = 0)

]
,

(13)

which can be derived by similar steps to those above.

Proof of Part 3: First consider A1 if the denominator is positive, as A1 = p1 is trivially bounded in [c, c]
by Assumption 2 if the denominator becomes zero. By its definition, we have

A1 =
p1P(Y = Q1 | X = 1)(

c−p1

c + FY |X(Q1 | 1)p1

c

)
− p1

c P(Y < Q1 | X = 1)
=

p1P(Y = Q1 | X = 1)

FY1(Q1)− FY1(Q1−)
.

From the inequality in equation (12), we deduce that P(Y = Q1 | X = 1) > 0, and

p1P(Y = Q1 | X = 1)

FY1
(Q1)− FY1

(Q1−)
∈ [c, c].

So this concludes that A1 ∈ [c, c]. Similarly, the results for A1, 1 − A0, and 1 − A0 can be deduced by
inequalities (13).

Proof of Part 4: These propensity scores can only take the values c, c, A1, A1, 1−A0, and 1−A0. By Part
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3, these values all lie in [c, c].

Proof of Part 5: First we show that E
[
1(Y ≤ y)X/p

1
(Y )
]
= FY1

(y) for all y ∈ R. The proof for FY1
is

similar by interchanging c with c and thus omitted.
To prove the desired identity, we split the analysis in three cases depending on the value of y ∈ R. For

y < Q
1
, we have 1(Y ≤ y)/p

1
(Y ) = 1(Y ≤ y)/c and thus

E

[
1(Y ≤ y)X

p
1
(Y )

]
= E

[
1(Y ≤ y)X

c

]
=

FY |X(y | 1)p1
c

= FY1
(y).

When y = Q
1
, we can write

E

[
1(Y ≤ Q

1
)X

p
1
(Y )

]
= E

[
1(Y < Q

1
)X

c

]
+ E

[
1(Y = Q

1
)X

A1

]

=
P(Y < Q

1
| X = 1)p1

c
+ P(Y = Q

1
| X = 1)p1

(
P(Y = Q

1
| X = 1)p1

FY1
(Q

1
)− FY1

(Q
1
−)

)−1

=
P(Y < Q

1
| X = 1)p1

c
+ FY1

(Q
1
)− FY1

(Q
1
−)

= FY1
(Q

1
−) + FY1

(Q
1
)− FY1

(Q
1
−)

= FY1
(Q

1
).

Finally, when y > Q
1
, we can write

E

[
1(Y ≤ y)X

p
1
(Y )

]
= E

[
1(Y ≤ Q

1
)X

p
1
(Y )

]
+ E

[
1(Q

1
< Y ≤ y)X

c

]

= FY1
(Q

1
) +

(
FY |X(y | 1)− FY |X(Q

1
| 1)
)
p1

c

=
c− p1

c
+ FY |X(Q

1
| 1)p1

c
+

(
FY |X(y | 1)− FY |X(Q

1
| 1)
)
p1

c

=
c− p1

c
+ FY |X(y | 1)p1

c

= FY1
(y).

Thus the desired identity holds for all y ∈ R.
Next we show the identity E

[
1(Y ≤ y)(1−X)/(1− p

0
(Y ))

]
= FY0

(y) for all y ∈ R. The proof for FY0

is similar by interchanging c with c and thus omitted. Similar to above, we split the analysis in three cases
depending on the value of y ∈ R. For y < Q

0
, we have 1(Y ≤ y)/(1− p

0
(Y )) = 1(Y ≤ y)/(1− c) and thus

E

[
1(Y ≤ y)(1−X)

1− p
0
(Y )

]
= E

[
1(Y ≤ y)(1−X)

1− c

]
=

FY |X(y | 0)p0
1− c

= FY0
(y).
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When y = Q
0
, we can write

E

[
1(Y ≤ y)(1−X)

1− p
0
(Y )

]
= E

[
1(Y < Q

0
)(1−X)

1− c

]
+ E

[
1(Y = Q

0
)(1−X)

A0

]

=
P(Y < Q

0
| X = 0)p0

1− c
+ P(Y = Q

0
| X = 0)p0

(
P(Y = Q

0
| X = 0)p0

FY0
(Q

0
)− FY0

(Q
0
−)

)−1

=
P(Y < Q

0
| X = 0)p0

1− c
+ FY0

(Q
0
)− FY0

(Q
0
−)

= FY0
(Q

0
−) + FY0

(Q
0
)− FY0

(Q
0
−)

= FY0
(Q

0
).

When y > Q
0
, we can write

E
[
1(Y ≤ y)(1−X)

1− p0(Y )

]
= E

[
1(Y ≤ Q

0
)(1−X)

1− p
0
(Y )

]
+ E

[
1(Q

0
< Y ≤ y)(1−X)

1− c

]

= FY0
(Q

0
) +

(
FY |X(y | 0)− FY |X(Q

0
|0)
)
p0

1− c

=
p1 − c

1− c
+ FY |X(Q

0
|0) p0

1− c
+

(
FY |X(y | 0)− FY |X(Q

0
|0)
)
p0

1− c

=
p1 − c

1− c
+ FY |X(y | 0) p0

1− c

= FY0
(y).

Thus the desired identity has been established for all y ∈ R.

Proof of Part 6: We begin by considering the first sequence of equivalences between (a), (b), and (c) for
x = 1. By Lemma 6.1.

FY1
(y1) ≤ FY0

(y0) ⇐⇒ R1(y1) := QY0
(FY1

(y1)) ≤ y0

FY |X(y1 | 1) ≤ FY0|X(y0 | 1) ⇐⇒ R2(y1) := QY0|X(FY |X(y1 | 1) | 1) ≤ y0

FY1|X(y1 | 0) ≤ FY0|X(y0|0) ⇐⇒ R3(y1) := QY |X(FY1|X(y1 | 0)|0) ≤ y0.

The equivalence relationship for the statements on the left hand side holds if R1(y1) = R2(y1) = R3(y1) for
all y1 ∈ R. By direct calculation, we can see that

R2(y1) = R3(y1) = QY |X

(
min

{
(1− c)p1

p0c
FY |X(y1 | 1), p0 − (1− c)

p0c
+

p1(1− c)

p0c
FY |X(y1 | 1)

}
| 0
)

and thus it remains to show that R1(y1) = R2(y1). Recall that

R1(y1) = QY0
(FY1

(y1))

= QY |X

(
min

{
1− c

p0
FY1

(y1),
p0 − (1− c)

p0
+

1− c

p0
FY1

(y1)

}
| 0
)
.

We split the proof into two cases. First consider y1 < Q1 = QY |X(τ1 | 1). In such case we have

FY |X(y1 | 1) < τ1 =
(c− p1)c

(c− c)p1
(14)
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by Lemma 6.1, and

FY1(y1) = FY |X(y | 1)p1
c
. (15)

Using equations (14) and (15), it can be verified that

1− c

p0
FY1

(y1) <
p0 − (1− c)

p0
+

1− c

p0
FY1

(y1).

This implies

R1(y1) = QY |X

(
1− c

p0
FY1(y1)|0

)
= QY |X

(
(1− c)p1

p0c
FY |X(y1 | 1)|0

)
if y1 < Q1. (16)

Next consider y ≥ Q1. Then we have FY |X(y1 | 1) ≥ τ1 by Lemma 6.1, and

FY1
(y1) =

c− p1
c

+ FY |X(y | 1)p1
c
.

These two implications lead to the following inequality

1− c

p0
FY1

(y1) ≥
p0 − (1− c)

p0
+

1− c

p0
FY1

(y1),

which further implies

R1(y1) = QY |X

(
p0 − (1− c)

p0
+

1− c

p0
FY1

(y1)|0
)

= QY |X

(
p0 − (1− c)

p0c
+

p1(1− c)

p0c
FY |X(y1 | 1)|0

)
if y1 ≥ Q1.

(17)

By Lemma 6.1, y1 < Q1 is equivalent to FY |X(y1 | 1) < τ1, and it is further equivalent to

(1− c)p1
p0c

FY |X(y1 | 1) < p0 − (1− c)

p0c
+

p1(1− c)

p0c
FY |X(y1 | 1).

From this, (16), and (17), we deduce that

R2(y1) = QY |X

(
min

{
(1− c)p1

p0c
FY |X(y1 | 1), p0 − (1− c)

p0c
+

p1(1− c)

p0c
FY |X(y1 | 1)

}
| 0
)

= QY |X

(
(1− c)p1

p0c
FY |X(y1 | 1)|0

)
1(y < Q1) +QY |X

(
c− p1
p0c

+
p1(1− c)

p0c
FY |X(y1 | 1)|0

)
1(y ≥ Q1)

= R1(y1).

Therefore, the desired conclusion for x = 1 has been established. Similar arguments can be used to show
that the same conclusion also holds for x = 0, and to show the second set of equivalences between (d), (e),
and (f).

Proof of Part 7: We first consider the equivalence of the statement (a), (b), and (c). We can write

∆1 := FY |X(Q1− | 1)− FY0|X(Q
0
− | 1) = FY |X(Q1− | 1)−

p0cFY |X(Q
0
− |0)

p1(1− c)

From this, we note that

∆2 := FY1
(Q1−)− FY0

(Q
0
−) =

p1FY |X(Q1− | 1)
c

−
p0FY |X(Q

0
− |0)

1− c
=

p1
c
∆1,
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and

∆3 := FY1|X(Q1 − |0)− FY |X(Q
0
− |0) = p1(1− c)

p0c
FY |X(Q1− | 1)− FY |X(Q

0
− |0) = p1(1− c)

p0c
∆1.

The desired result follows by noting that ∆1, ∆2, and ∆3 all have the same sign. The proof of the equivalence
of statements (d), (e), and (f) is similar and thus omitted.

Proof of Part 8: We have that

FY1
(Q1−) =

FY |X(QY |X(τ1 | 1)− | 1)p1
c

≤ τ1
p1
c

=
c− p1
c− c

by Lemma 6.3. Similarly,

FY1(Q1) =
c− p1

c
+

FY |X(QY |X(τ1 | 1) | 1)p1
c

≥ c− p1
c

+ τ1
p1
c

=
c− p1
c− c

.

by Lemma 6.2. The other inequalities can be shown in a similar manner. Their derivations are thus omitted.

Proof of Part 9: We have that

FY |X(Q1− | 1) = FY |X
(
QY |X(τ1 | 1)− | 1

)
≤ τ1

by Lemma 6.3. Similarly,
FY |X(Q1 | 1) = FY |X

(
QY |X(τ1 | 1) | 1

)
≥ τ1

by Lemma 6.2. The same arguments can be applied to FY0|X(Q
0
− |1) and FY0|X(Q

0
|1). So we have

FY0|X(Q
0
− |1) = FY |X(QY |X(τ0|0)− |0) p0c

p1(1− c)
≤

τ0p0c

p1(1− c)
=

c(c− p1)

p1(c− c)
= τ1.

via Lemma 6.3, and

FY0|X(Q
0
|1) = p1 − c

(1− c)p1
+ FY |X(QY |X(τ0|0)|0)

p0c

p1(1− c)
≥ p1 − c

(1− c)p1
+

τ0p0c

p1(1− c)
= τ1.

via Lemma 6.2. The proofs for the other inequalities are similar and thus omitted.

Proof of Part 10: We begin by considering the first set of equivalences between (a), (b), and (c) when
x = 1, and the equivalences for x = 0 are identical. By Lemma 6.1, we have the following equivalence
relationships:

FY1
(y1) + FY0

(y0) ≥ 1 ⇐⇒ y1 ≥ R1(y0) := Q
Y1
(1− FY0

(y0))

FY |X(y1 | 1) + FY0|X(y0 | 1) ≥ 1 ⇐⇒ y1 ≥ R2(y0) := QY |X(1− FY0|X(y0 | 1) | 1)
FY1|X(y1 | 0) + FY |X(y0|0) ≥ 1 ⇐⇒ y1 ≥ R3(y0) := Q

Y1|X
(1− FY |X(y0|0) | 1).

To prove the equivalence of statements on the left, it suffices to show that R1(y0) = R2(y0) = R3(y0) for all
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y0 ∈ R. First, we directly compute R2(y0) and R3(y0):

R2(y0) = QY |X(1− FY0|X(y0 | 1) | 1)

= QY |X

(
1−min

{
p0cFY |X(y0|0)

p1(1− c)
,
p1 − c+ p0cFY |X(y0|0)

p1(1− c)

}
| 1
)

= QY |X

(
max

{
1−

p0cFY |X(y0|0)
p1(1− c)

, 1−
p1 − c+ p0cFY |X(y0|0)

p1(1− c)

}
| 1
)

= QY |X

(
max

{
1−

p0cFY |X(y0|0)
p1(1− c)

,
p1(1− c)− p1 + c− p0cFY |X(y0|0)

p1(1− c)

}
| 1
)

= QY |X

(
max

{
1−

p0cFY |X(y0|0)
p1(1− c)

,
cp0(1− FY |X(y0|0))

p1(1− c)

}
| 1
)
,

and

R3(y0) = Q
Y1|X

(1− FY |X(y0|0) | 1)

= QY |X

(
max

{
cp0(1− FY |X(y0|0))

p1(1− c)
,
p1 − c+ cp0(1− FY |X(y0|0))

p1(1− c)

}
| 1
)

= QY |X

(
max

{
cp0(1− FY |X(y0|0))

p1(1− c)
, 1−

cp0FY |X(y0|0))
p1(1− c)

}
| 1
)
.

Since y0 was arbitrary, we conclude that R2(y0) = R3(y0) for all y0 ∈ R.
We next establish that R1(y0) = R2(y0) for all y0 ∈ R. Note that

R1(y0) = Q
Y1
(1− FY0

(y0))

= QY |X

(
max

{
c

p1
(1− FY0

(y0)),
p1 − c

p1
+

c

p1
(1− FY0

(y0))

}
| 1
)

= QY |X

(
max

{
c

p1
(1− FY0

(y0)), 1−
c

p1
FY0

(y0)

}
| 1
)
.

If y0 < Q0, Lemma 6.1 implies

FY0(y0) =
p0

1− c
FY |X(y | 0) and FY |X(y0|0) < τ0 =

(p1 − c)(1− c)

(c− c)p0
.

These two (in)equalities imply that

c

p1
(1− FY0

(y0)) < 1− c

p1
FY0

(y0).

Then it follows that

R1(y0) = QY |X

(
1− c

p1
FY0

(y0) | 1
)

= QY |X

(
1−

cp0FY |X(y0|0)
p1(1− c)

|1
)

if y0 < Q0. (18)

Similarly, it can be verified that

R1(y0) = QY |X

(
c

p1
(1− FY0

(y0)) | 1
)

= QY |X

(
cp0(1− FY |X(y0|0))

p1(1− c)
| 1
)

if y0 ≥ Q0. (19)

By Lemma 6.1, y0 < Q0 is equivalent to FY |X(y0|0) < τ0, and it is further equivalent to

1−
cp0FY |X(y0|0)

p1(1− c)
>

cp0(1− FY |X(y0|0))
p1(1− c)

.
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Therefore, we can write

R2(y0) = QY |X

(
1−

cp0FY |X(y0|0)
p1(1− c)

| 1
)
1(y0 < Q0) +QY |X

(
cp0(1− FY |X(y0|0))

p1(1− c)
| 1
)
1(y0 ≥ Q0). (20)

By combining (18), (19), and (20), we note that R2(y0) = R1(y0) for all y0 ∈ R, as desired. The proof for
the second set of equivalences between (d), (e), and (f) is similar and thus omitted.

Proof of Part 11: We show the first set of equivalences between (a), (b), and (c), and the proof for
the second set of equivalences between (d), (e), and (f) follows similar arguments and thus omitted. First,
we expand

∆′
1 := FY |X(Q1 | 1) + FY0|X(Q0− | 1)− 1 = FY |X(Q1 | 1) + FY |X(Q0 − |0) p0c

p1(1− c)
− 1.

Next, note that

∆′
2 := FY1(Q1) + FY0(Q0−)− 1

=
c− p1

c
+ FY |X(Q1 | 1)p1

c
+ FY |X(Q0 − |0) p0

1− c
− 1

=
p1
c

[
FY |X(Q1 | 1) + FY |X(Q0 − |0) p0c

p1(1− c)
− 1

]
=

p1
c
∆′

1,

and

∆′
3 := FY1|X(Q1|0) + FY |X(Q0 − |0)− 1

=
c− p1
cp0

+ FY |X(Q1 | 1)p1(1− c)

p0c
+ FY |X(Q0 − |0)− 1

=
p1(1− c)

p0c

[
FY |X(Q1 | 1) + FY |X(Q0 − |0) p0c

p1(1− c)
+

c− p1
p1(1− c)

− (1− p1)c

p1(1− c)

]
=

p1(1− c)

p0c

[
FY |X(Q1 | 1) + FY |X(Q0 − |0) p0c

p1(1− c)
− 1

]
=

p1(1− c)

p0c
∆′

1.

Therefore, the desired result follows by noting that ∆′
1, ∆

′
2, ∆

′
3 all have the same sign.

Proof of Theorem 1. Fix a w ∈ supp(W ) and (ε, γ, C1,0|1,w, C1,0|0,w) ∈ [0, 1]2 × C2. We prove this theorem

by constructing a probability distribution P̃ for (Y1, Y0, X) conditional on W = w such that for all y ∈ R,
x ∈ {0, 1}, and (y1, y0) ∈ R2, the following conditions hold:

1. P̃(Y1 ≤ y | W = w) = εFY1|W (y | w) + (1− ε)FY1|W (y | w) and
P̃(Y0 ≤ y | W = w) = γFY0|W (y | w) + (1− γ)FY0|W (y | w) ;

2. P̃(X = x | W = w) = px|w;

3. P̃(Yx ≤ y | X = x,W = w) = FY |X,W (Y | X,w);

4. P̃(Y1 ≤ y1, Y0 ≤ y0 | X = x,W = w) = C1,0|x,w(P̃(Y1 ≤ y1 | X = x,W = w), P̃(Y1 ≤ y0 | X = x,W =
w));

5. P̃(X = 1 | Yx,W = w) ∈ [c(w, η), c(w, η)] P̃-almost surely.

Condition 1 requires that an arbitrary convex combination of marginal cdf bounds stated in Theorem
1 can be achieved by the constructed measure. Condition 4 then states that any bivariate copula C1,0|x,w
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is also achievable. Conditions 2 and 3 require the constructed measure generate the same distribution of
(Y,X) as the observed data conditional on W = w. Finally, Condition 5 requires the marginal c-dependence
Assumption 2 to be satisfied for the constructed measure when conditioning on W = w. As a result, the
constructed measure P̃ generates the marginal cdfs and copulas in Theorem 1 and satisfies all the requirements
in the definition of identified set Imarg

0 (FY,X,W ).
For the conciseness of the proof, we write C1,0|x,w as Cx,w for x ∈ {0, 1} so that subscripts of copulas

denote the conditioning variables.
Let

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = xC1,w(FY |X,W (y1 | 1, w), F0(y0 | 1, w; γ))p1|w
+ (1− x)C0,w(F1(y1 | 0, w; ε), FY |X,W (y0|0, w))p0|w.

(21)

where

F0(y0 | 1, w; γ) = γFY0|X,W (y0 | 1, w) + (1− γ)FY0|X,W (y0 | 1, w)

F1(y1 | 0, w; ε) = εFY1|X,W (y1 | 0, w) + (1− ε)FY1|X,W (y1 | 0, w).

Since convex combinations of cdfs are cdfs, and by Lemma 4.1, both F0(· | 1, w; γ) and F1(· | 0, w; ε) are cdfs.
By Sklar’s Theorem (Nelsen, 2006, Theorem 2.3.3), the expression in (21) is a joint distribution function for
(Y1, Y0, X) conditional on W = w.

For the rest of the proof, we very conditions 1-5 for the constructed measure P̃.

Verifying Condition 1: For y ∈ R, we can see that

P̃(Y1 ≤ y | W = w) =
∑

x∈{0,1}

lim
y0→+∞

P̃(Y1 ≤ y, Y0 ≤ y0, X = x | W = w)

= lim
y0→+∞

C1,w(FY |X,W (y1 | 1, w), F0(y0 | 1, w; γ))p1|w

+ lim
y0→+∞

C0,w(F1(y1 | 0, w; ε), FY |X,W (y0|0, w))p0|w

= C1,w(FY |X,W (y1 | 1, w), 1)p1|w + C0,w(F1(y1 | 0, w; ε), 1)p0|w
= FY |X,W (y1 | 1, w)p1|w + F1(y1 | 0, w; ε)p0|w
= ε(FY |X,W (y1 | 1, w)p1|w + FY1|X,W (y1 | 0, w)p0|w)

+ (1− ε)(FY |X,W (y1 | 1, w)p1|w + FY1|X,W (y1 | 0, w)p0|w)
= εFY1|W (y | w) + (1− ε)FY1|W (y | w).

The third line holds since Cx,w(1, u) = Cx,w(u, 1) = u for x ∈ {0, 1} and u ∈ [0, 1]. The last line holds by
Lemma 4.2.

Likewise,

P̃(Y0 ≤ y | W = w) =
∑

x∈{0,1}

lim
y1→+∞

P̃(Y1 ≤ y1, Y0 ≤ y,X = x | W = w)

= γFY0|W (y | w) + (1− γ)FY0|W (y | w).

Verifying Condition 2: For x ∈ {0, 1}, we have that

P̃(X = x | W = w) = lim
y1,y0→∞

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w)

= xC1,w(1, 1)p1|w + (1− x)C0,w(1, 1)p0|w

= xp1|w + (1− x)p0|w

= px|w.

The third equality uses the fact that Cx,w(1, 1) = 1 for x ∈ {0, 1}.
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Verifying Condition 3: For x ∈ {0, 1} and y ∈ R, we have that

P̃(Yx ≤ y | X = x,W = w) = lim
y′→+∞

P̃(Yx ≤ y, Y1−x ≤ y′, X = x | W = w)

P̃(X = x | W = w)

=
xC1,w(FY |X,W (y | 1, w), 1)p1|w + (1− x)C0,w(1, FY |X,W (y | 0, w))p0|w

px|w

=
xFY |X,W (y | 1, w)p1|w + (1− x)FY |X,W (y | 0)p0|w

px|w

=
FY |X,W (Y | X,w)px|w

px|w

= FY |X,W (Y | X,w).

The third line holds again by Cx(1, u) = Cx(u, 1) = u for x ∈ {0, 1} and u ∈ [0, 1]. The last line follows by
Assumption 1 that px|w > 0 for x ∈ {0, 1}.

Verifying Condition 4: First, following similar steps for verifying condition 3, we have

P̃(Yx ≤ y | X = 1− x,W = w) =
limy′→+∞ P̃(Yx ≤ y, Y1−x ≤ y′, X = 1− x | W = w)

P̃(X = 1− x | W = w)

=
(1− x)C1,w(1, F0(y0 | 1, w; γ))p1|w + xC0,w(F1(y1 | 0, w; ϵ), 1)p0|w

p1−x|w

=
(1− x)p1|wF0(y0 | 1, w; γ) + xp0|wF1(y1 | 0, w; ϵ)

p1−x|w

= (1− x)F0(y0 | 1, w; γ) + xF1(y1 | 0, w; ϵ).

(22)

Then for (y1, y0) ∈ R2, it follows that

P̃(Y1 ≤ y1, Y0 ≤ y0|X = x)

= xC1,w(FY |X,W (y1 | 1, w), F0(y0 | 1, w; γ)) + (1− x)C0,w(F1(y1 | 0, w; ϵ), FY |X,W (y0|0, w))

= xC1,w(P̃(Y1 ≤ y1 | X = 1,W = w), P̃(Y0 ≤ y0 | X = 1,W = w))

+ (1− x)C0,w(P̃(Y1 ≤ y1 | X = 0,W = w), P̃(Y0 ≤ y0 | X = 0,W = w))

= Cx,w(P̃(Y1 ≤ y1 | X = x,W = w), P̃(Y0 ≤ y0 | X = x,W = w)).

The second line holds by Condition 3 and equation (22).

Verifying Condition 5: In this part, we establish an explicit formula of the propensity score function
under P̃ and show that it is contained in [c(w, η), c(w, η)] almost surely. To achieve this goal, we divide the
analysis into two cases.

Case 1: Consider the case where p1|w = c(w, η). By direct calculation,

FY1|W (y | w) = FY1|W (y | w) = FY |X,W (y | 1, w) and FY0|W (y | w) = FY0|W (y | w) = FY |X,W (y | 0, w).

Based on condition 1 we verified above, we have

P̃(Y1 ≤ y1 | W = w) = FY |X,W (y1 | 1, w) and P̃(Y0 ≤ y0 | W = w) = FY |X,W (y1 | 0, w).

Since p1|w = c(w, η), by Assumption 2, it is straightforwardly to see that P(X = 1 | Y1,W = w) = P(X =
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1 | Y0,W = w) = c(w, η) almost surely, which further implies

Ẽ
[
1[Y ≤ y1]X

c(w, η)
|W = w

]
= E

[
1[Y ≤ y1]X

c(w, η)
|W = w

]
= FY |X,W (y1 | 1, w)

= P̃(Y1 ≤ y1 | W = w)

and

Ẽ
[
1[Y ≤ y0](1−X)

1− c(w, η)
|W = w

]
= E

[
1[Y ≤ y0](1−X)

1− c(w, η)
|W = w

]
= FY |X,W (y0|0, w)

= P̃(Y0 ≤ y0 | W = w).

Following Lemma 5, this implies Ẽ(X | Y1,W = w) = Ẽ(X | Y0,W = w) = c(w, η) almost surely under P̃,
which is naturally bounded within [c(w, η), c(w, η)], as desired. The proof for the case where p1|w = c(w, η)
follows the same argument by interchanging c(w, η) with c(w, η) and thus omitted.

Case 2: Consider the case where c(w, η) < p1|w < c(w, η). Define

p1(y, w; ε) =
1

εp
1
(y, w)−1 + (1− ε)p1(y, w)

−1
,

where p1(y, w) and p
1
(y, w) are defined in Appendix A.

By Lemma 7.4, p
1
(Y1, w), p1(Y1, w) ∈ [c(w, η), c(w, η)] almost surely. Therefore,

p1(Y1, w; ε) =
1

εp
1
(Y1, w)−1 + (1− ε)p1(Y1, w)−1

≤ 1

εc(w, η)−1 + (1− ε)c(w, η)−1
= c(w, η)

and

p1(Y1, w; ε) =
1

εp
1
(Y1, w)−1 + (1− ε)p1(Y1, w)−1

≥ 1

εc(w, η)−1 + (1− ε)c(w, η)−1
= c(w, η).

Therefore p1(Y1, w; ε) ∈ [c(w, η), c(w, η)] almost surely.

Next we will show that Ẽ[X | Y1,W = w] = p1(Y1, w; ε) via Lemma 5 by verifying that

Ẽ
[
1(Y1 ≤ y)X

p1(Y1, w; ε)
|W = w

]
= P̃(Y1 ≤ y | W = w) = εFY1|W (y | w) + (1− ε)FY1|W (y | w), for all y ∈ R.

To show this, we have the following derivations:

Ẽ
[
1(Y1 ≤ y)X

p1(Y1, w; ε)
|W = w

]
= E

[
1(Y ≤ y)X

p1(Y,w; ε)
|W = w

]
= E

[
1(Y ≤ y)X

(
ε

p
1
(Y,w)

+
1− ε

p1(Y,w)

)
| W = w

]

= εE

[
1(Y ≤ y)X

p
1
(Y,w)

|W = w

]
+ (1− ε)E

[
1(Y ≤ y)X

p1(Y,w)
|W = w

]
= εFY1|W (y | w) + (1− ε)FY1|W (y | w).

The first equality holds by noting that the distribution of Y1 conditional X = 1 and W = w under P̃ is the
same as the one under the population P as verified by condition 2. The last equality follows by applying
Lemma 7.5.
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For the cdf of Y0, define

p0(Y0, w; γ) = 1− 1

γ(1− p
0
(Y0, w))−1 + (1− γ)(1− p0(Y0, w))−1

.

Since 1− p
0
(Y0, w), 1− p0(Y0, w) ∈ [1− c(w, η), 1− c(w, η)] almost surely, we have that

p0(Y0, w; γ) = 1− 1

γ(1− p
0
(Y0, w))−1 + (1− γ)(1− p0(Y0, w))−1

≤ 1− 1

γ(1− c(w, η))−1 + (1− γ)(1− c(w, η))−1

= c(w, η),

and

p0(Y0, w; γ) = 1− 1

γ(1− p
0
(Y0, w))−1 + (1− γ)(1− p0(Y0, w))−1

≥ 1− 1

γ(1− c(w, η))−1 + (1− γ)(1− c(w, η))−1

= c(w, η).

Therefore, p0(Y0, w; η) ∈ [c(w, η), c(w, η)] almost surely. We can also see that

Ẽ
[
1(Y0 ≤ y)(1−X)

1− p0(Y0, w; γ)
|W = w

]
= E

[
1(Y ≤ y)(1−X)

1− p0(Y,w; η)
|W = w

]
= E

[
1(Y ≤ y)(1−X)

(
γ

1− p
0
(Y0, w)

+
1− γ

1− p0(Y0, w)

)
| W = w

]

= γE

[
1(Y ≤ y)(1−X)

1− p
0
(Y0, w)

|W = w

]
+ (1− γ)E

[
1(Y ≤ y)(1−X)

1− p0(Y0, w)
|W = w

]
= γFY0|W (y | w) + (1− γ)FY0|W (y | w),

where the last equality follows by Lemma 7.5. Therefore, by Lemma 5, P̃(X = 1 | Y0,W = w) =
p0(Y0, w; η) ∈ [c(w, η), c(w, η)] almost surely, which concludes the proof.

C.2 Proof of Theorem 2

This appendix provides a proof of Theorem 2 and all of its auxiliary lemmas. First, we define four latent
propensity score functions. For w ∈ supp(W ), let

pul(y1, y0, w;B) =


c if y1 ≤ Q1, y0 ≤ Q

0
, (y1, y0) ̸= (Q1, Q0

)

B if (y1, y0) = (Q1, Q0
)

c if y1 ≥ Q1, y0 ≥ Q
0
, (y1, y0) ̸= (Q1, Q0

)

p1|w otherwise,

(23)

puu(y1, y0, w;B) =


c if y1 ≤ Q1, y0 ≥ Q0, (y1, y0) ̸= (Q1, Q0)

B if (y1, y0) = (Q1, Q0)

c if y1 ≥ Q1, y0 ≤ Q0, (y1, y0) ̸= (Q1, Q0)

p1|w otherwise,

(24)
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plu(y1, y0, w;B) =


c if y1 ≤ Q1, y0 ≤, Q

0
, (y1, y0) ̸= (Q1, Q0

)

B if (y1, y0) = (Q1, Q0
)

c if y1 ≥ Q1, y0 ≥ Q
0
, (y1, y0) ̸= (Q1, Q0

)

p1|w otherwise,

(25)

pll(y1, y0, w;B) =


c if y1 ≤ Q1, y0 ≥ Q0, (y1, y0) ̸= (Q1, Q0)

B if (y1, y0) = (Q1, Q0)

c if y1 ≥ Q1, y0 ≤ Q0, (y1, y0) ̸= (Q1, Q0)

p1|w otherwise.

(26)

By appropriately specifying the constant B in these propensity scores, we can show that they correspond
to the propensity scores P(X = 1 | Y1, Y0,W = w) under joint c-dependence for all four pairs of cdf bounds.
Before showing this, we state and prove three auxiliary lemmas.

Lemma 8. Let w ∈ supp(W ). Suppose m(·) is a Borel measurable function and P(m(Y1, Y0) > δ|W = w) =
1 for some δ > 0. The following statements are equivalent:

1. Conditional on W = w, the following statement holds almost surely:

m(Y1, Y0) = E[X | Y1, Y0,W = w]. (27)

2. For all (y1, y0) ∈ R2, the following equality holds:

E [1(Y1 ≤ y1, Y0 ≤ y0)m(Y1, Y0) | W = w] = P(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w). (28)

Proof of Lemma 8. We first show (27) implies (28), note that

P (Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w) = E [1[Y1 ≤ y1, Y0 ≤ y0]X | W = w]

= E (E [1[Y1 ≤ y1, Y0 ≤ y0]X|Y1, Y0,W = w] |W = w)

= E (1[Y1 ≤ y1, Y0 ≤ y0]E[X|Y1, Y0,W = w]|W = w)

= E (1[Y1 ≤ y1, Y0 ≤ y0]m(Y1, Y0) | W = w) .

(29)

where we use the law of iterated expectation in the second line and use (27) in the last line of derivation.
Next, we show that (28) implies (27). To establish this result, we first note a few key facts:

1. Following from the last two lines of (29), the law of iterated expectations implies

E[1[Y1 ≤ y1, Y0 ≤ y0]E(X | Y1, Y0,W = w) | W = w] = E[1[Y1 ≤ y1, Y0 ≤ y0]m(Y1, Y0) | W = w]

for each (y1, y0) ∈ R2.

2. For (y1, y0) ∈ R2, define the preimage from a half-space on R2:

Iy1,y0
= {ω ∈ Ω : Y1(ω) ≤ y1, Y0(ω) ≤ y0}

and let A2 :=
{
Iy1,y0

: (y1, y0) ∈ R2
}
. Similar to the proof of lemma 5, the class of sets A2 is a

π-system.

3. The sample space can be written as a countable union of sets in A2:

Ω = {ω ∈ Ω : Y1(ω) < ∞, Y0(ω) < ∞} =

∞⋃
n=1

In,n.
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4. The random variable m(Y1, Y0) is measurable with respect to the σ-algebra generated by (Y1, Y0) due
to the Borel measurability of m(·), and it is integrable since E(m(Y1, Y0) | W = w) = P(X = 1 | W =
w) < ∞ by sending y1 and y0 to infinity in (29).

5. The σ-algebra generated by A2 equals the σ-algebra generated by (Y1, Y0), i.e.,

σ(A2) = σ(Y1, Y0).

To show this, define the mapping f : Ω → R2 as f(ω) 7→ (Y1(ω), Y0(ω)) and F = {(−∞, y1]×(−∞, y0] :
(y1, y0) ∈ R2}. Note that

σ(A2) = σ(f−1(F)) = f−1(σ(F)).

Since the Borel σ-algebra on R2 can be generated by elements in F , we have σ(F) = B(R2). This
implies

f−1(σ(F)) = f−1(B(R2)) := σ(Y1, Y0).

Therefore the desired conclusion holds.

Given the above results, it follows by Billingsley (1995, Theorem 34.1) that

E[X | Y1, Y0,W = w] = m(Y1, Y0),

almost surely conditional on W = w, as desired.

Lemma 9. Let w ∈ supp(W ). Consider a probability distribution defined by

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = min{FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)}p1|wx

+min{FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)}p0|w(1− x),

then

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = min{FY1|W (y1 | w), FY0|W (y0 | w)}.

Also for the following distribution,

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = min{FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)}p1|wx
+min{FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)}p0|w(1− x)

implies

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = min{FY1
(y1 | w), FY0(y0 | w)}.

Proof of Lemma 9. Consider the first statement with p1|w = c. Then it follows that FY1|X,W (y1 | 0, w) =
FY1|W (y1 | w) = FY |X,W (y1 | 1, w) and FY0|X,W (y0 | 1, w) = FY0|W (y0 | w) = FY |X,W (y0|0, w). Therefore,

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = min
{
FY |X,W (y1 | 1, w), FY |X,W (y0|0, w)

}
px|w.

This implies

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = min
{
FY |X,W (y1 | 1, w), FY |X,W (y0|0, w)

}
= min

{
FY1|W (y1 | w), FY0|W (y0 | w)

}
as desired. The proof for the case where p1|w = c follows the same arguments and thus omitted.
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Next consider c < p1|w < c. We have that

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)

= min{FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)}p1|w +min{FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)}p0|w
= FY |X,W (y1 | 1, w)p1|w1(FY0|X,W (y0 | 1, w) ≥ FY |X,W (y1 | 1, w))
+ FY0|X,W (y0 | 1, w)p1|w1(FY0|X,W (y0 | 1, w) < FY |X,W (y1 | 1, w))

+ FY1|X,W (y1 | 0, w)p0|w1(FY |X,W (y0|0, w) ≥ FY1|X,W (y1 | 0, w))
+ FY |X,W (y0|0, w)p0|w1(FY |X,W (y0|0, w) < FY1|X,W (y1 | 0, w))

=
(
FY |X,W (y1 | 1, w)p1|w + FY1|X,W (y1 | 0, w)p0|w

)
1[FY0|W (y0 | w) ≥ FY1|W (y1 | w)]

+
(
FY0|X,W (y0 | 1, w)p1|w + FY |X,W (y0|0, w)p0|w

)
1[FY0|W (y0 | w) < FY1|W (y1 | w)]

= min{FY1|W (y1 | w), FY0|W (y0 | w)}.

The third equality follows by the first set of equivalences in Lemma 7.6 after setting x = 1. The last equality
follows by Lemma 4.2. The second statement follows similar arguments but instead uses Lemma 7.6 by
setting x = 0. Therefore, the proof is complete.

Lemma 10. Let w ∈ supp(W ). Consider a probability distribution defined by

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = max{FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0}p1|wx
+max{FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0}p0|w(1− x)

then

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = max{FY1|W (y1 | w) + FY0|W (y0 | w)− 1, 0}.

Also for the following distribution,

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = max{FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0}p1|wx
+max{FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0}p0|w(1− x)

implies

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = max{FY1|W (y1 | w) + FY0|W (y0 | w)− 1, 0}.

Proof of Lemma 10. Consider the first statement. Similar arguments from the proof of Lemma 9 can be
used to establish the desired result for p1|w = c or p1|w = c. Thus we consider the case where c < p1|w < c.
Then we have that

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)

= max{FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0}p1|w
+max{FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0}p0|w

= max{p1|w(FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1), 0}
+max

{
p0|w(FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1), 0

}
= max

{∑
x=0,1

px|wFY |X,W (yx|x,w) + p0|wFY1|X,W (y1 | 0, w) + p1|wFY0|X,W (y0 | 1, w)− (p1|w + p0|w), 0

}
= max{FY1|W (y1 | w), FY0|W (y0 | w)− 1, 0}.

The second equality follows by the first set of equivalences in Lemma 7.10 by setting x = 1. The last equality
holds by Lemma 4.2. The second statement follows similar arguments but instead uses Lemma 7.10 on the
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second set of equivalences regarding lower bounds of cdfs. Therefore, the proof is complete.

Lemma 11. Let assumptions 1 and 3 hold. Let C1,0|X,W and C1,0|X,W denote classes of comonotonic (and

counter-monotonic) copulas where C1,0|x,w(u, v) = min{u, v} and C1,0|x,w(u, v) = max{u + v − 1, 0} for all

(x,w) ∈ {0, 1} × supp(W ). Then each of the following terms is contained in the identified set Ij
0(FY,X,W ):

1. (FY1|W , FY0|W , C1,0|X,W );

2. (FY1|W , FY0|W , C1,0|X,W );

3. (FY1|W , FY0|W , C1,0|X,W );

4. (FY1|W , FY0|W , C1,0|X,W ).

Proof of Lemma 11. Proof of Part 1: Fix a w ∈ supp(W ). We prove the first statement by constructing

a probability distribution P̃ for (Y1, Y0, X) conditional on W = w such that for all y ∈ R and x ∈ {0, 1}, we
have

1. P̃(Y1 ≤ y | W = w) = FY1|W (y | w) and P̃(Y0 ≤ y | W = w) = FY0|W (y | w);

2. P̃(X = x | W = w) = px|w;

3. P̃(Yx ≤ y | X = x,W = w) = FY |X,W (Y | X,w);

4. P̃(Y1 ≤ y1, Y0 ≤ y0 | X = x,W = w) = min
{
P̃(Y1 ≤ y1 | X = x,W = w), P̃(Y0 ≤ y0 | X = x,W = w)

}
;

5. P̃(X = 1 | Y1, Y0,W = w) ∈ [c, c] for P̃-almost surely.

Similar to the arguments in the proof of Theorem 1, Conditions 1–5 ensures that the constructed distri-
bution P̃ generates the desired marginal cdfs and copulas in Lemma 11.1 and staisfies all the requirements
in the definition of identified set Ij

0(FY,X,W ).
Let

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = xmin{FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)}p1|w
+ (1− x)min{FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)}p0|w.

(30)

By Lemma 4.1, FY0|X,W (y0 | 1, w) and FY1|X,W (y1 | 0, w) are cdfs. Also note that (u, v) 7→ min{u, v} is the

comonotonic copula. By Sklar’s Theorem, P̃ is a joint distribution function for (Y1, Y0, X) conditional on
W = w.

Following the same steps as in the proof of Theorem 1, it can be shown show that conditions 1–4 are
satisfied because the distribution in (30) is the same as in (21) but for a specific rather than an arbitrary

choice of copulas. By Lemma 9, P̃ implies the following co-monotonic joint distribution of (Y1, Y0):

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = min
{
FY1|W (y1 | w), FY0|W (y0 | w)

}
. (31)

To show condition 5 holds, and thus complete the proof, we construct a function pul such that pul(Y1, Y0) =

Ẽ[X | Y1, Y0,W = w] and pul(Y1, Y0, w) ∈ [c, c] almost surely under P̃.
First consider p1|w = c, then we have

FY0|W (y0 | w) = FY0|X,W (y0 | 1, w) = FY |X,W (y0|0, w)

and
FY1|W (y1 | w) = FY1|X,W (y1 | 0, w) = FY |X,W (y1 | 1, w).

This implies the following derivation

Ẽ [1(Y1 ≤ y1, Y0 ≤ y0)c|W = w] = p1|wP̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)

= p1|w min
{
FY |X,W (y1 | 1, w), FY |X,W (y0|0, w)

}
= P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w).
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The first line holds by c = p1|w, the second line holds by (31), and the last line holds by (30). Following

Lemma 8, we conclude that P̃(X = 1 | Y1, Y0,W = w) = c almost surely, which is naturally bounded between
c and c. The proof of the case where p1|w = c is similar and thus omitted.

Next consider c < p1|w < c. Let pul(Y1, Y0, w) = pul(Y1, Y0, w;B
ul) defined in (23), where

Bul =
P̃(Y1 = Q1, Y0 = Q

0
, X = 1 | W = w)

P̃(Y1 = Q1, Y0 = Q
0
| W = w)

whenever P̃(Y1 = Q1, Y0 = Q
0
| W = w) > 0. Let Bul = p1|w otherwise.

We verify that Bul ∈ [c, c] if the denominator is nonzero.
First, note that the denominator of Bul can be expanded below

P̃(Y1 = Q1, Y0 = Q
0
| W = w)

= P̃(Y1 ≤ Q1, Y0 ≤ Q
0
| W = w)− P̃(Y1 ≤ Q1, Y0 < Q

0
| W = w)

− P̃(Y1 < Q1, Y0 ≤ Q
0
| W = w) + P̃(Y1 < Q1, Y0 < Q

0
| W = w)

= min{FY1|W (Q1 | w), FY0|W (Q
0
|w)} −min{FY1|W (Q1 | w), FY0|W (Q

0
− |w)}

−min{FY1|W (Q1− | w), FY0|W (Q
0
|w)}+min{FY1|W (Q1− | w), FY0|W (Q

0
− |w)},

where the second equality holds via (31). By Lemma 7.8, this expression simplifies to

P̃(Y1 = Q1, Y0 = Q
0
| W = w)

= min{FY1|W (Q1 | w), FY0|W (Q
0
|w)} − FY0|W (Q

0
− |w)

− FY1|W (Q1− | w) + min{FY1|W (Q1− | w), FY0|W (Q
0
− |w)}

= min{FY1|W (Q1 | w), FY0|W (Q
0
|w)} −max{FY1|W (Q1− | w), FY0|W (Q

0
− |w)}.

Second, we expand the numerator of Bul. We have that

P̃(Y1 = Q1, Y0 = Q
0
, X = 1 | W = w) = P̃(Y1 = Q1, Y0 = Q

0
| X = 1,W = w)p1|w

and that

P̃(Y1 = Q1, Y0 = Q
0
| X = 1,W = w)

= min{FY |X,W (Q1 | 1, w), FY0|X,W (Q
0
| 1, w)} −min{FY |X,W (Q1 | 1, w), FY0|X,W (Q

0
− | 1, w)}

−min{FY |X,W (Q1− | 1, w), FY0|X,W (Q
0
| 1, w)}+min{FY |X,W (Q1− | 1, w), FY0|X,W (Q

0
− | 1, w)}

= min{FY |X,W (Q1 | 1, w), FY0|X,W (Q
0
| 1, w)} − FY0|X,W (Q

0
− | 1, w)

− FY |X,W (Q1− | 1, w) + min{FY |X,W (Q1− | 1, w), FY0|X,W (Q
0
− | 1, w)}

= min{FY |X,W (Q1 | 1, w), FY0|X,W (Q
0
| 1, w)} −max{FY |X,W (Q1− | 1, w), FY0|X,W (Q

0
− | 1, w)},

where the second to last equality follows from Lemma 7.9.
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From Part 6 and 7 of Lemma 7, we observe that Bul can take four possible values as follows:

Bul =
P̃(Y1 = Q1, Y0 = Q

0
| X = 1,W = w)p1|w

P̃(Y1 = Q1, Y0 = Q
0
| W = w)

=
(FY |X,W (Q1 | 1, w)− FY |X,W (Q1− | 1, w))p1|w

FY1|W (Q1 | w)− FY1|W (Q1− | w)
1

(
FY1|W (Q1 | w) ≤ FY0|W (Q

0
|w),

FY1|W (Q1− | w) > FY0|W (Q
0
− |w)

)
(32)

+
(FY |X,W (Q1 | 1, w)− FY0|X,W (Q

0
− | 1, w))p1|w

FY1|W (Q1 | w)− FY0|W (Q
0
− |w)

1

(
FY1|W (Q1 | w) ≤ FY0|W (Q

0
|w),

FY1|W (Q1− | w) ≤ FY0|W (Q
0
− |w)

)
(33)

+
(FY0|X,W (Q

0
| 1, w)− FY |X,W (Q1− | 1, w))p1|w

FY0|W (Q
0
|w)− FY1|W (Q1− | w)

1

(
FY1|W (Q1 | w) > FY0|W (Q

0
|w),

FY1|W (Q1− | w) > FY0|W (Q
0
− |w)

)
(34)

+
(FY0|X,W (Q

0
| 1, w)− FY0|X,W (Q

0
− | 1, w))p1|w

FY0|W (Q
0
|w)− FY0|W (Q

0
− |w)

1

(
FY1|W (Q1 | w) > FY0|W (Q

0
|w),

FY1|W (Q1− | w) ≤ FY0|W (Q
0
− |w)

)
. (35)

All the terms have positive denominators since we focus on the case where P̃(Y1 = Q1, Y0 = Q
0
| W = w) > 0.

As shown in Lemma 7.4, terms (32) and (35) lie in [c, c].
Next we examine the term (33), which can be written as follows

(FY |X,W (Q1 | 1, w)− FY0|X,W (Q
0
− | 1, w))p1|w

FY1|W (Q1 | w)− FY0|W (Q
0
− |w)

=
FY |X,W (Q1 | 1, w)p1|w − FY |X,W (Q

0
− |0, w)p0|wc

1−c

c−p1|w
c + FY |X,W (Q1 | 1, w)p1|w

c − FY |X,W (Q
0
− |0, w)p0|w

1−c

= c+
(c− c)p1|w

c

FY |X,W (Q1 | 1, w)− τ1
c−p1|w

c + FY |X,W (Q1 | 1, w)p1|w
c − FY |X,W (Q

0
− |0, w)p0|w

1−c

= c+
(c− c)p1|w

c

FY |X,W (Q1 | 1, w)− τ1

FY1|W (Q1 | w)− FY0|W (Q
0
− |w)

≥ c

where the last line follows by c ≥ c and FY |X,W (Q1 | 1, w) ≥ τ1 via Lemma 6.2. Also note that

(FY |X,W (Q1 | 1, w)− FY0|X,W (Q
0
− | 1, w))p1|w

FY1|W (Q1 | w)− FY0|W (Q
0
− |w)

= c+
p0|w(c− c)

1− c

FY |X,W (Q
0
− |0, w)− τ0

FY1|W (Q1 | w)− FY0|W (Q
0
− |w)

≤ c,

where the inequality follows by c ≥ c and FY |X,W (Q
0
− |0, w) ≤ τ0 via Lemma 6.3. Thus we have shown the

term (33) is bounded within [c, c].
Then consider the term (34). Following the same arguments, we have

(FY0|X,W (Q
0
| 1, w)− FY |X,W (Q1− | 1, w))p1|w

FY0|W (Q
0
|w)− FY1|W (Q1− | w)

= c+
p0|w(c− c)

1− c

FY |X,W (Q
0
|0, w)− τ0

FY0|W (Q
0
|w)− FY1|W (Q1− | w)

≥ c,

and

(FY0|X,W (Q
0
| 1, w)− FY |X,W (Q1− | 1, w))p1|w

FY0|W (Q
0
|w)− FY1|W (Q1− | w)

= c+
p1|w(c− c)

c

FY |X,W (Q1− | 1.w)− τ1

FY0|W (Q
0
|w)− FY1|W (Q1− | w)

≤ c.

So we have shown that all the four terms (32)–(35) are bounded within [c, c], thus concluding Bul ∈ [c, c],
which then establishes pul(Y1, Y0, w) ∈ [c, c] almost surely.

To finish this proof, we demonstrate that Ẽ[X | Y1, Y0,W = w] = pul(Y1, Y0, w) almost surely. To do so,
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we use Lemma 8 and show that

Ẽ
[
1(Y1 ≤ y1, Y0 ≤ y0)p

ul(Y1, Y0, w) | W = w
]
= P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w)

= p1|w min{FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)}
(36)

for all (y1, y0) ∈ R2. To complete the proof, we break this up into different cases.

(Part 1) Case 1: y1 < Q1 and y0 < Q
0
.

In this case, pul(Y1, Y0, w)1[Y1 ≤ y1, Y0 ≤ y0] = c1[Y1 ≤ y1, Y0 ≤ y0]. Thus we have

Ẽ
[
1(Y1 ≤ y1, Y0 ≤ y0)p

ul(Y1, Y0, w) | W = w
]
= cmin

{
FY1|W (y1 | w), FY0|W (y0 | w)

}
= cmin

{
FY |X,W (y1 | 1, w)

p1|w

c
, FY |X,W (y0|0, w)

p0|w

1− c

}
= min

{
FY |X,W (y1 | 1, w)p1|w, FY |X,W (y0|0, w)

p0|wc

1− c

}
= p1|w min

{
FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)

}
.

The second line holds by the assumption that y1 < Q1 and y0 < Q
0
. Therefore, we have shown that (36)

holds.

(Part 1) Case 2: y1 ≥ Q1 and y0 < Q
0
.

First, note that the joint cdf from (31) implies

P̃(Y1 > Q1, Y0 < Q
0
| W = w) = P̃(Y1 < Q1, Y0 > Q

0
| W = w) = 0. (37)

These equalities follow by

P̃(Y1 > Q1, Y0 < Q
0
| W = w) = P̃(Y0 < Q

0
| W = w)− P̃(Y0 < Q

0
, Y1 ≤ Q1 | W = w)

= FY0|W (Q
0
− |w)−min

{
FY1|W (Q1 | w), FY0|W (Q

0
− |w)

}
= FY0|W (Q

0
− |w)− FY0|W (Q

0
− |w)

= 0,

where the third line holds by Lemma 7.8. Similarly,

P̃(Y1 < Q1, Y0 > Q
0
| W = w) = P̃(Y1 < Q1 | W = w)− P̃(Y1 < Q1, Y0 ≤ Q

0
| W = w)

= FY1|W (Q1− | w)−min
{
FY1|W (Q1− | w), FY0|W (Q

0
|w)
}

= FY1|W (Q1− | w)− FY1|W (Q1− | w)
= 0.

Based on (37), we can decompose the left-hand-side term of (36) as below

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
ul(Y1, Y0, w) | W = w)

= cP̃(Y1 ≤ Q1, Y0 ≤ y0 | W = w) + p1|w · P̃(Q1 < Y1 ≤ y1, Y0 ≤ y0 | W = w)

= cP̃(Y1 ≤ Q1, Y0 ≤ y0 | W = w)

= cmin
{
FY1|W (Q1 | w), FY0|W (y0 | w)

}
.

Note that FY1|W (Q1 | w) ≥ FY0|W (Q
0
−|w) ≥ FY0|W (y0 | w) by Lemma 7.8 and the condition that y0 < Q

0
.
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We have

cmin
{
FY1|W (Q1 | w), FY0|W (y0 | w)

}
= cFY0|W (y0 | w) = p1|wFY0|X,W (y0 | 1, w).

By Lemma 7.6 (the second set of equivalent results), FY1|W (Q1 | w) ≥ FY0|W (y0 | w) also implies

FY0|X,W (y0 | 1, w) ≤ FY |X,W (Q1 | 1, w) ≤ FY |X,W (y1 | 1, w),

hence we have

p1|wFY0|X,W (y0 | 1, w) = p1|w min
{
FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)

}
.

Combining those results then yields (36), as desired.

(Part 1) Case 3: y1 < Q1 and y0 ≥ Q
0
.

Following similar arguments in Case 2, we have the following equality

Ẽ
(
1(Y1 ≤ y1, Y0 ≤ y0)p

ul(Y1, Y0, w) | W = w
)

= cP̃(Y1 ≤ y1, Y0 ≤ Q
0
| W = w) + p1|w · P̃(Y1 ≤ y1, Q0

< Y0 ≤ y0 | W = w)

= cmin
{
FY1|W (y1 | w), FY0|W (Q

0
|w)
}

= cFY1|W (y1 | w)
= p1|wFY |X,W (y1 | 1, w)

= p1|w min
{
FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)

}
where we use (37) in the second equality, the third equality follows by Lemma 7.8, and the condition that
y1 < Q1, and the last line holds by Lemma 7.9, where we deduce that

FY |X,W (y1 | 1, w) ≤ FY |X,W (Q1− | 1, w) ≤ FY0|X,W (Q
0
| 1, w) ≤ FY0|X,W (y0 | 1, w).

Therefore, we established (36).

(Part 1) Case 4: y1 = Q1 and y0 = Q
0
.

We can decompose the LHS probability of (36) as follows:

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
ul(Y1, Y0, w) | W = w)

= Ẽ(1(Y1 = y1, Y0 = y0)p
ul(Y1, Y0) | W = w) + Ẽ(1(Y1 ≤ y1, Y0 < y0)p

ul(Y1, Y0, w) | W = w)

+ Ẽ(1(Y1 < y1, Y0 ≤ y0)p
ul(Y1, Y0, w) | W = w)− Ẽ(1(Y1 < y1, Y0 < y0)p

ul(Y1, Y0, w) | W = w).

= BulP̃(Y1 = Q1, Y0 = Q
0
| W = w)

+ lim
u↗Q

0

Ẽ(1(Y1 ≤ Q1, Y0 ≤ u | w = w)pul(Y1, Y0, w) | W = w)

+ lim
v↗Q1

Ẽ(1(Y1 ≤ v, Y0 ≤ Q
0
)pul(Y1, Y0, w) | W = w)

− lim
v↗Q1,u↗Q

0

Ẽ(1(Y1 ≤ v, Y0 ≤ u)pul(Y1, Y0, w) | W = w)

= P̃(Y1 = Q1, Y0 = Q
0
, X = 1 | W = w) + lim

u↗Q
0

P̃(Y1 ≤ Q1, Y0 ≤ u,X = 1 | W = w)

+ lim
v↗Q1

P̃(Y1 ≤ v, Y0 ≤ Q
0
, X = 1 | W = w)− lim

v↗Q1,u↗Q
0

P̃(Y1 ≤ v, Y0 ≤ u,X = 1 | W = w)

= P̃(Y1 ≤ Q1, Y0 ≤ Q0, X = 1 | W = w).
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The second equality holds by the monotone convergence theorem. The third equality holds by the conclusion
proved in Case 1–3. The last equality holds by the continuity of probability measure. Thus (36) has been
verified.

(Part 1) Case 5: (y1, y0) ≥ (Q1, Q0
).

Given the above results, we have the following derivation:

Ẽ
(
1(Y1 ≤ y1, Y0 ≤ y0)p

ul(Y1, Y0, w) | W = w
)

= Ẽ
(
1(Y1 ≤ Q1, Y0 ≤ Q

0
)pul(Y1, Y0, w) | W = w

)
+ Ẽ

(
c
[
1(Y1 ≤ y1, Y0 ≤ y0 | W = w)− 1(Y1 ≤ Q1, Y0 ≤ Q

0
)
]
|W = w

)
= P̃(Y1 ≤ Q1, Y0 ≤ Q

0
, X = 1 | W = w) + c

(
P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)− P̃(Y1 ≤ Q1, Y0 ≤ Q

0
) | W = w

)
= cmin

{
FY1|W (y1 | w), FY0|W (y0 | w)

}
+ p1|w min

{
FY |X,W (Q1 | 1, w), FY0|X,W (Q

0
| 1, w)

}
− cmin

{
FY1|W (Q1 | w), FY0|W (Q

0
|w)
}

= cmin
{
FY1|W (y1 | w), FY0|W (y0 | w)

}
+
[
FY |X,W (Q1 | 1, w)p1|w − FY1|W (Q1 | w)c

]
1(FY1|W (Q1 | w) ≤ FY0|W (Q

0
|w))

+
[
FY0|X,W (Q

0
| 1, w)p1|w − FY0|W (Q

0
|w)c

]
1(FY1|W (Q1 | w) > FY0|W (Q

0
|w))

= cmin
{
FY1|W (y1 | w), FY0|W (y0 | w)

}
− (c− p1|w)

= min

{
FY |X,W (y1 | 1, w)p1|w,

p1|w − c

1− c
+ FY |X,W (y0|0, w)

p0|wc

1− c

}
= p1|w min

{
FY |X,W (y1 | 1, w), FY0|X,W (y0|0, w)

}
,

where the first equality follows by (37) that (Y1, Y0) has no mass on the off-diagonal area, the second equality
follows by the result established in Case 4 above, and the fourth equality follows by Lemma 7.6. Thus we
have verified (36).

Since R2 is partitioned by these 5 cases, we have established that Ẽ[X | Y1, Y0,W = w] = pul(Y1, Y0, w)
almost surely, which concludes the proof of Part 1.

Proof of Part 2: We prove this by constructing a probability distribution P̃ for (Y1, Y0, X) conditional on
W = w such that for all y ∈ R and x ∈ {0, 1}, we have

1. P̃(Y1 ≤ y | W = w) = FY1|W (y | w) and P̃(Y0 ≤ y | W = w) = FY0|W (y | w);

2. P̃(X = x | W = w) = px|w;

3. P̃(Yx ≤ y | X = x,W = w) = FY |X,W (Y | X,w);

4. P̃(Y1 ≤ y1, Y0 ≤ y0 | X = x,W = w) = max
{
P̃(Y1 ≤ y1 | X = x,W = w) + P̃(Y0 ≤ y0 | X = x,W = w)− 1, 0

}
;

5. P̃(X = 1 | Y1, Y0,W = w) ∈ [c, c] for P̃-almost surely.

Let

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = xmax{FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0}p1|w
+ (1− x)max{FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0}p0|w.

(38)
By Lemma 4.1, FY0|X,W (y0 | 1, w) and FY1|X,W (y1 | 0, w) are cdfs. Also note that (u, v) 7→ max{u+v−1, 0}
is the counter-monotonic copula. Following Sklar’s Theorem, P̃ is a joint distribution function for (Y1, Y0, X)
conditional on W = w.
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Following the same steps as in the proof of Theorem 1, we can show that conditions 1–4 are satisfied
because the distribution in (38) is the same as in (21) but for a specific rather than an arbitrary choice of

copulas. By Lemma 10, P̃ leads to the following counter-monotonic joint distribution of (Y1, Y0):

P̃(Y1 ≤ y1, Y0 ≤ y0 | W = w) = max
{
FY1|W (y1 | w) + FY0|W (y0 | w)− 1, 0

}
. (39)

To show condition 5 holds, and thus complete the proof, we must find a function puu such that
puu(Y1, Y0, w) = Ẽ[X | Y1, Y0,W = w] and puu(Y1, Y0, w) ∈ [c, c] almost surely under P̃.

First consider p1|w = c, then we have

FY1|X,W (y1 | 0, w) = FY1|W (y1 | w) = FY |X,W (y1 | 1, w)

and
FY0|X,W (y0 | 1, w) = FY0|W (y0 | w) = FY |X,W (y0|0, w).

This implies the following derivations:

Ẽ [1(Y1 ≤ y1, Y0 ≤ y0)c|W = w] = p1|wP̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)

= p1|w max
{
FY |X,W (y1 | 1, w) + FY |X,W (y0|0, w)− 1, 0

}
= P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w).

The first line holds by c = p1|w, the second line holds by (39), and the last line holds by (38). Following

Lemma 8, we conclude that P̃(X = 1 | Y1, Y0,W = w) = c ∈ [c, c] almost surely. The proof of the case where
p1|w = c is similar and thus omitted.

Next consider c < p1|w < c. Let puu(Y1, Y0, w) = puu(Y1, Y0, w;B
uu) defined in (24), where

Buu =
P̃(Y1 = Q1, Y0 = Q0, X = 1 | W = w)

P̃(Y1 = Q1, Y0 = Q0 | W = w)

whenever P̃(Y1 = Q1, Y0 = Q0 | W = w) > 0. Set Buu = p1|w otherwise.
We verify that Buu ∈ [c, c] if the denominator is nonzero.
First, note that the denominator of Buu can be expanded below

P̃(Y1 = Q1, Y0 = Q0 | W = w)

= P̃(Y1 ≤ Q1, Y0 ≤ Q0 | W = w)− P̃(Y1 ≤ Q1, Y0 < Q0 | W = w)

− P̃(Y1 < Q1, Y0 ≤ Q0 | W = w) + P̃(Y1 < Q1, Y0 < Q0 | W = w)

= max{FY1|W (Q1 | w) + FY0|W (Q0|w)− 1, 0} −max{FY1|W (Q1 | w) + FY0|W (Q0 − |w)− 1, 0}
−max{FY1|W (Q1− | w) + FY0|W (Q0|w)− 1, 0}+max{FY1|W (Q1− | w) + FY0|W (Q0 − |w)− 1, 0}.

where the second equality holds via (39). By Lemma 7.8, we observe that

FY1|W (Q1 | w) + FY0|W (Q0|w)− 1 ≥
c− p1|w

c− c
+

p1|w − c

c− c
− 1 = 0

FY1|W (Q1− | w) + FY0|W (Q0 − |w)− 1 ≤
c− p1|w

c− c
+

p1|w − c

c− c
− 1 = 0,
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hence this expression simplifies to

P̃(Y1 = Q1, Y0 = Q
0
| W = w)

= FY1|W (Q1 | w) + FY0|W (Q0|w)− 1

−max{FY1|W (Q1 | w) + FY0|W (Q0 − |w)− 1, 0} −max{FY1|W (Q1− | w) + FY0|W (Q0|w)− 1, 0}
= min

{
1− FY0|W (Q0 − |w), FY1|W (Q1 | w)

}
+min

{
1− FY1|W (Q1− | w), FY0|W (Q0|w)

}
− 1.

Second, we expand the numerator of Buu. We have that

P̃(Y1 = Q1, Y0 = Q0, X = 1 | W = w) = P̃(Y1 = Q1, Y0 = Q0 | X = 1,W = w)p1|w

and that

P̃(Y1 = Q1, Y0 = Q0 | X = 1,W = w)

= max{FY |X,W (Q1 | 1, w) + FY0|X,W (Q0 | 1, w)− 1, 0}
−max{FY |X,W (Q1 | 1, w) + FY0|X,W (Q0− | 1, w)− 1, 0}
−max{FY |X,W (Q1− | 1, w) + FY0|X,W (Q0 | 1, w)− 1, 0}
+max{FY |X,W (Q1− | 1, w) + FY0|X,W (Q0− | 1, w)− 1, 0}

= FY |X,W (Q1 | 1, w) + FY0|X,W (Q0 | 1, w)− 1−max{FY |X,W (Q1 | 1, w) + FY0|X,W (Q0− | 1, w)− 1, 0}
−max{FY |X,W (Q1− | 1, w) + FY0|X,W (Q0 | 1, w)− 1, 0}+ 0

= min
{
1− FY0|X,W (Q0− | 1, w), FY |X,W (Q1 | 1, w)

}
+min

{
1− FY |X,W (Q1− | 1, w), FY0|X,W (Q0 | 1, w)

}
− 1.

where the second to last equality follows from Lemma 7.9, where we note that τ1 + τ1 = 1.
From Lemma 7.11, Buu can take four possible values as follows:

Buu =
P̃(Y1 = Q1, Y0 = Q0 | X = 1,W = w)p1|w

P̃(Y1 = Q1, Y0 = Q0 | W = w)

=

(
1− FY0|X,W (Q0− | 1, w)− FY |X,W (Q1− | 1, w)

)
p1|w

1− FY0|W (Q0 − |w)− FY1|W (Q1− | w)
1

(
FY1|W (Q1 | w) + FY0|W (Q0 − |w) ≥ 1,
FY1|W (Q1− | w) + FY0|W (Q0|w) ≥ 1

)
(40)

+

(
FY |X,W (Q1 | 1, w)− FY |X,W (Q1− | 1, w)

)
p1|w

FY1|W (Q1 | w)− FY1|W (Q1− | w)
1

(
FY1|W (Q1 | w) + FY0|W (Q0 − |w) < 1,
FY1|W (Q1− | w) + FY0|W (Q0|w) ≥ 1

)
(41)

+

(
FY0|X,W (Q0 | 1, w)− FY0|X,W (Q0− | 1, w)

)
p1|w

FY0|W (Q0|w)− FY0|W (Q0 − |w)
1

(
FY1|W (Q1 | w) + FY0|W (Q0 − |w) ≥ 1,
FY1|W (Q1− | w) + FY0|W (Q0|w) < 1

)
(42)

+

(
FY0|X,W (Q0 | 1, w) + FY |X,W (Q1 | 1, w)− 1

)
p1|w

FY0|W (Q0|w) + FY1|W (Q1 | w)− 1
1

(
FY1|W (Q1 | w) + FY0|W (Q0 − |w) < 1,
FY1|W (Q1− | w) + FY0|W (Q0|w) < 1

)
(43)

As shown in Lemma 7.3, terms (41) and (42) lie in [c, c].
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Next we examine the term (40), which can be written as below(
1− FY0|X,W (Q0− | 1, w)− FY |X,W (Q1− | 1, w)

)
p1|w

1− FY0|W (Q0 − |w)− FY1|W (Q1− | w)

=
p1|w

(
1− FY |X,W (Q0 − |0, w) p0|wc

p1|w(1−c) − FY |X,W (Q1− | 1, w)
)

1− FY |X,W (Q0 − |0, w)p0|w
1−c − FY |X,W (Q1− | 1, w)p1|w

c

= c+
p1|w − c− FY |X,W (Q0 − |0, w)p0|w(c−c)

1−c

P̃(Y1 = Q1, Y0 = Q0 | W = w)

≥ c+
p1|w − c− τ0

p0|w(c−c)

1−c

P̃(Y1 = Q1, Y0 = Q0 | W = w)

= c,

where the inequality follows by Lemma 6.3 that FY |X,W (Q0−|0, w) = FY |X,W (QY |X,W (τ0|0, w)−|0, w) ≤ τ0.
Also note that(

1− FY0|X,W (Q0− | 1, w)− FY |X,W (Q1− | 1, w)
)
p1|w

1− FY0|W (Q0 − |w)− FY1|W (Q1− | w)
= c+

(p1|w − c) + FY |X,W (Q1− | 1, w)p1|w(c−c)

c

P̃(Y1 = Q1, Y0 = Q0 | W = w)

≤ c+
(p1|w − c) + τ1

p1|w(c−c)

c

P̃(Y1 = Q1, Y0 = Q0 | W = w)

= c,

where the inequality follows by Lemma 6.3 that FY |X,W (Q1− | 1, w) = FY |X,W (QY |X,W (τ1 | 1, w)− | 1, w) ≤
τ1. Then we have shown that the term (40) is bounded between c and c.

Then consider the term (43). Following the same arguments, we have(
FY0|X,W (Q0 | 1, w) + FY |X,W (Q1 | 1, w)− 1

)
p1|w

FY0|W (Q0|w) + FY1|W (Q1 | w)− 1
= c+

p1|w(c−c)

c FY |X,W (Q1 | 1, w)− (c−p1|w)c

c

P̃(Y1 = Q1, Y0 = Q0 | W = w)
≥ c

(
FY0|X,W (Q0 | 1, w) + FY |X,W (Q1 | 1, w)− 1

)
p1|w

FY0|W (Q0|w) + FY1|W (Q1 | w)− 1
= c+

(p1|w−c)(1−c)

1−c − FY |X,W (Q0|0, w)
p0|w(c−c)

1−c

P̃(Y1 = Q1, Y0 = Q0 | W = w)
≤ c,

where inequalities follow by Lemma 6.2 that FY |X,W (Qx|x,w) ≥ τx for x = 0, 1. So we have shown that
all four terms (40)–(43) are bounded within [c, c], thus concluding Buu ∈ [c, c], which then establishes
puu(Y1, Y0, w) ∈ [c, c] almost surely.

To finish this proof, we demonstrate that Ẽ[X | Y1, Y0,W = w] = puu(Y1, Y0, w) almost surely. To do so,
we use Lemma 8 and show that

Ẽ [1(Y1 ≤ y1, Y0 ≤ y0) p
uu(Y1, Y0, w) | W = w] = P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w)

= p1|w max{FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0}
(44)

for all (y1, y0) ∈ R2. To complete the proof, we break this up into different cases.

(Part 2) Case 1: y1 < Q1 and y0 < Q0.

First, note that the joint cdf from (39) implies

P̃(Y1 < Q1, Y0 < Q0 | W = w) = P̃(Q1 < Y1, Q0 < Y0 | W = w) = 0. (45)
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These equalities can be verified by the arguments below:

P̃(Y1 < Q1, Y0 < Q0 | W = w) = max
{
FY1|W (Q1− | w) + FY0|W (Q0 − |w)− 1, 0

}
≤ max

{
c− p1|w

c− c
+

p1|w − c

c− c
− 1, 0

}
= 0,

where the inequality follows by Lemma 7.8, and similarly,

P̃(Q1 < Y1, Q0 < Y0 | W = w) = 1− P̃(Y1 ≤ Q1 | W = w)− P̃(Y0 ≤ Q0 | W = w)

+ P̃(Y1 ≤ Q1, Y0 ≤ Q0 | W = w)

= 1− FY1|W (Q1 | w)− FY0|W (Q0|w)
+ max

{
FY1|W (Q1 | w) + FY0|W (Q0|w)− 1, 0

}
= 1−min

{
1, FY1|W (Q1 | w) + FY0|W (Q0|w)

}
≤ 1−min

{
1,

c− p1|w

c− c
+

p1|w − c

c− c

}
= 0,

where the inequality follows by Lemma 7.8.
On the one hand, (45) implies

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
uu(Y1, Y0, w) | W = w) = p1|wP̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)

≤ p1|wP̃(Y1 < Q1, Y0 < Q0 | W = w)

= 0.

This shows Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
uu(Y1, Y0, w) | W = w) = 0 due to the construction that puu(Y1, Y0, w) is

non-negative. On the other hand,

P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w) = p1|w max
{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
≤ p1|w max

{
FY |X,W (Q1− | 1, w) + FY0|X,W (Q0− | 1, w)− 1, 0

}
≤ p1|w max {τ1 + τ1 − 1, 0}
= 0,

where the second inequality follows by Lemma 7.9. This implies P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w) = 0,
thus establishing (44), as desired.

(Part 2) Case 2: y1 ≥ Q1, y0 < Q0.

First, note that (45) implies that

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
uu(Y1, Y0, w) | W = w)

= Ẽ(1(Q1 ≤ Y1 ≤ y1, Y0 ≤ y0)c|W = w) + Ẽ(1(Y1 < Q1, Y0 ≤ y0)p1|w|W = w)

= Ẽ(1(Q1 ≤ Y1 ≤ y1, Y0 ≤ y0)c|W = w) + Ẽ(1(Y1 < Q1, Y0 ≤ y0)c|W = w)

= Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)c|W = w),

where the second equality follows by the fact that P̃ takes no mass on {Y1 < Q1, Y0 ≤ y0} ⊆ {Y1 < Q1, Y0 <
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Q0} by (45). Next we expand the last expression

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)c|W = w)

= cP̃(Y1 ≤ y1, Y0 ≤ y0 | W = w)

= cmax
{
FY1|W (y1 | w) + FY0|W (y0 | w)− 1, 0

}
= cmax

{
c− p1|w

c
+ FY |X,W (y1 | 1, w)

p1|w

c
+ FY |X,W (y0|0, w)

p0|w

1− c
− 1, 0

}
= p1|w max

{
FY |X,W (y1 | 1, w) +

c− p1|w

p1|w
+ FY |X,W (y0|0, w)

p0|wc

p1|w(1− c)
− c

p1|w
, 0

}
= p1|w max

{
FY |X,W (y1 | 1, w) + FY |X,W (y0|0, w)

p0|wc

p1|w(1− c)
− 1, 0

}
= p1|w max

{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
,

thus establishing (44), as desired.

(Part 2) Case 3: y1 < Q1, y0 ≥ Q0.

Similar to the proof of case 2 above, we have

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
uu(Y1, Y0, w) | W = w) = Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)c|W = w)

due to (45). Next we expand the expression on the right hand side.

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)c|W = w)

= cmax
{
FY1|W (y1 | w) + FY0|W (y0 | w)− 1, 0

}
= cmax

{
FY |X,W (y1 | 1, w)

p1|w

c
+

p1|w − c

1− c
+ FY |X,W (y0|0, w)

p0|w

1− c
− 1, 0

}
= p1|w max

{
FY |X,W (y1 | 1, w) +

(p1|w − c)c

p1|w(1− c)
+ FY |X,W (y0|0, w)

p0|wc

p1|w(1− c)
− c

p1|w
, 0

}
= p1|w max

{
FY |X,W (y1 | 1, w) +

p1|w − c

p1|w(1− c)
+ FY |X,W (y0|0, w)

p0|wc

p1|w(1− c)
− 1, 0

}
= p1|w max

{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
,

thus establishing (44), as desired.

(Part 2) Case 4: y1 = Q1, y0 = Q0.

Note that the equality (44) can be established following the same arguments from the proof of Part 1,
case 4. Once the results are established for cases 1–3, the equality (44) holds for y1 = Q1, y0 = Q0 by
applying monotone convergence theorem and continuity of measure. To this end, the proof is omitted.

(Part 2) Case 5: (y1, y0) ≥ (Q1, Q0).
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We start by noting that

Ẽ(1(Y1 ≤ y1, Y0 ≤ y0)p
uu(Y1, Y0, w) | W = w)

= p1|wP̃(Y1 ∈ (Q1, y1], Y0 ∈ (Q0, y0]|W = w) + cP̃(Y1 ≤ Q1, Y0 ∈ (Q0, y0]|W = w)

+ cP̃(Y1 ∈ (Q1, y1], Y0 ≤ Q0) | W = w) + Ẽ(1(Y1 ≤ Q1, Y0 ≤ Q0)p
uu(Y1, Y0, w) | W = w)

= c
(
P̃(Y1 ≤ Q1, Y0 ∈ (Q0, y0]|W = w) + P̃(Y1 > Q1, Y0 ∈ (Q0, y0]) | W = w

)
+ c

(
P̃(Y1 ∈ (Q1, y1], Y0 ≤ Q0) | W = w) + P̃(Y1 ∈ (Q1, y1], Y0 > Q0)) | W = w

)
+ Ẽ(1(Y1 ≤ Q1, Y0 ≤ Q0)p

uu(Y1, Y0, w) | W = w)

= cP̃(Y0 ≤ (Q0, y0]|W = w) + cP̃(Y1 ∈ (Q1, y1]|W = w) + Ẽ(1(Y1 ≤ Q1, Y0 ≤ Q0)p
uu(Y1, Y0, w) | W = w),

where the second equality follows by (45) that P̃ takes no mass on diagonal area. Next we expand the last
line.

cP̃(Y0 ≤ (Q0, y0]|W = w) + cP̃(Y1 ∈ (Q1, y1]|W = w) + Ẽ(1(Y1 ≤ Q1, Y0 ≤ Q0)p
uu(Y1, Y0) | W = w)

= c
[
FY0|W (y0 | w)− FY0|W (Q0|w)

]
+ c

[
FY1|W (y1 | w)− FY1|W (Q0|w)

]
+ P̃(Y1 ≤ Q1, Y0 ≤ Q0, X = 1 | W = w)

=
p0|wc

1− c

(
FY |X,W (y0|0, w)− FY |X,W (Q0|0, w)

)
+ p1|w

(
FY |X,W (y1 | 1, w)− FY |X,W (Q1 | 1, w)

)
+ p1|w max

{
FY |X,W (Q1 | 1, w) + FY0|X,W (Q0 | 1, w)− 1, 0

}
=

p0|wc

1− c

(
FY |X,W (y0|0, w)− FY |X,W (Q0|0, w)

)
+ p1|w

(
FY |X,W (y1 | 1, w)− FY |X,W (Q1 | 1, w)

)
+ p1|w

(
FY |X,W (Q1 | 1, w) + FY0|X,W (Q0 | 1, w)− 1

)
= p1|w

[
FY |X,W (y1 | 1, w) +

p1|w − c

p1|w(1− c)
+

p0|wc

p1|w(1− c)
FY |X,W (y0|0, w)− 1

]
= p1|w

[
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1

]
= p1|w max

{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
.

The third and the last equality hold by the following derivation

FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1 ≥ FY |X,W (Q1 | 1, w) + FY0|X,W (Q0 | 1, w)− 1

≥ τ1 + τ1 − 1

= 0,

where the second inequality follows by Lemma 7.9. Hence we have established (44), as desired.

Since R2 is partitioned by these 5 cases, we haven shown that Ẽ[X | Y1, Y0,W = w] = puu(Y1, Y0, w)
almost surely, which concludes the proof of Part 2.

Proof of Part 3: One can show that (FY1|W , FY0|W , C1,0|X,W ) can be achieved by the joint distribution of
(Y1, Y0, X) conditional on W = w constructed as below:

P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w)

= xmin
{
FY |X,W (y1 | 1, w), FY0|X,W (y0 | 1, w)

}
p1|w + (1− x)min

{
FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)

}
p0|w.

It can be verified that this joint distribution satisfies the following 5 conditions: for all y ∈ R and x ∈ {0, 1},

1. P̃(Y1 ≤ y | W = w) = FY1|W (y | w) and P̃(Y0 ≤ y | W = w) = FY0(y | w);

2. P̃(X = x | W = w) = px|w;
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3. P̃(Yx ≤ y | X = x,W = w) = FY |X,W (Y | X,w);

4. P̃(Y1 ≤ y1, Y0 ≤ y0 | X = x,W = w) = min
{
P̃(Y1 ≤ y1 | X = x,W = w), P̃(Y0 ≤ y0 | X = x,W = w)

}
;

5. Ẽ(X | Y1, Y0,W = w) = plu(Y1, Y0, w;B
lu) ∈ [c, c], for P̃-almost surely with

Blu =
P̃(Y1 = y1, Y0 = y0, X = 1 | W = w)

P̃(Y1 = y1, Y0 = y0 | W = w)
.

The arguments are similar to the proof of Part 1 and thus omitted.

Proof of Part 4: One can show that (FY1|W , FY0|W , C1,0|X,W ) can be achieved by the joint distribution of
(Y1, Y0, X) conditional on W = w constructed as below:

P̃(Y1 ≤ y1, Y0 ≤ y0, X = 1 | W = w) = xmax
{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
p1|w

+ (1− x)max
{
FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0

}
p0|w.

It can be verified that this joint distribution satisfies the following four conditions: for all y ∈ R and
x ∈ {0, 1},

1. P̃(Y1 ≤ y | W = w) = FY1|W (y | w) and P̃(Y0 ≤ y | W = w) = FY0|W (y | w);

2. P̃(X = x | W = w) = px|w;

3. P̃(Yx ≤ y | X = x,W = w) = FY |X,W (Y | X,w);

4. P̃(Y1 ≤ y1, Y0 ≤ y0 | X = x,W = w) = max
{
P̃(Y1 ≤ y1 | X = x,W = w) + P̃(Y0 ≤ y0 | X = x,W = w)− 1, 0

}
;

5. Ẽ(X | Y1, Y0,W = w) = pll(Y1, Y0, w;B
ll) ∈ [c, c], for P̃-almost surely with

Bll =
P̃(Y1 = y1, Y0 = y0, X = 1 | W = w)

P̃(Y1 = y1, Y0 = y0 | W = w)
.

The arguments are similar to the proof of Part 2 and thus omitted.

Suppose {F k
Y1,Y0,X

}Kk=1 is a set of valid cdfs of (Y1, Y0, X) whose support of X is {0, 1}. Consider a
mixture of cdfs defined as

Fmix
Y1,Y0,X(y1, y0, x) =

K∑
k=1

akF
k
Y1,Y0,X(y1, y0, x) (46)

where ak ∈ [0, 1] for all k ∈ {1, . . . ,K},
∑K

k=1 ak = 1, and (y1, y0, x) ∈ R2 × {0, 1}.
Let pk(Y1, Y0) := Ek[X | Y1, Y0], where Ek denotes the expectation under cdf F k

Y1,Y0,X
for k ∈ {1, . . . ,K,mix}.

The next lemma will be used to show that mixtures of distributions satisfying joint c-dependence also satisfy
joint c-dependence.

Lemma 12. There exists a sequence of Borel measurable function {fk(·, ·)}Kk=1 : R2 → R such that

1. fk(Y1, Y0) ∈ [0, 1] for each k ∈ {1, . . . ,K}, and
∑K

k=1 fk(Y1, Y0) = 1,

2. pmix(Y1, Y0) =
∑K

k=1 fk(Y1, Y0)p
k(Y1, Y0),

almost surely under the distribution Fmix
Y1,Y0,X

.
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Proof of Lemma 12. Let Pk denote the probability taken under cdf F k
Y1,Y0,X

for k ∈ {1, . . . ,K,mix}. Then
it follows by the definition of conditional probability that

Pmix(Y1 ≤ y1, Y0 ≤ y0, X = 1) = Emix
[
1[Y1 ≤ y1, Y0 ≤ y0]p

mix(Y1, Y0)
]

=

∫
u≤y1,v≤y0

pmix(u, v) dFmix
Y1,Y0

,

where the last line denotes the Lebesgue-Stieltjes integral with respect to the cdf Fmix
Y1,Y0

.
Likewise, for each k ∈ {1, . . . ,K}, we have

Pk(Y1 ≤ y1, Y0 ≤ y0, X = 1) =

∫
u≤y1,v≤y0

pk(u, v) dF k
Y1,Y0

.

Since (46) implies that

Pmix(Y1 ≤ y1, Y0 ≤ y0, X = 1) =

K∑
k=1

akPk(Y1 ≤ y1, Y0 ≤ y0, X = 1),

we have ∫
w≤y1,v≤y0

pmix(w, v) dFmix
Y1,Y0

=

K∑
k=1

ak

∫
u≤y1,v≤y0

pk(u, v) dF k
Y1,Y0

. (47)

Following the Carathéodory extension theorem (e.g., Ash and Doléans-Dade (2000, Theorem 1.4.9)),
there exists unique Lebesgue-Stieltjes measures νmix and {νk}Kk=1 defined on (R2,B(R2)) that are consistent
with cdfs Fmix

Y1,Y0
and {F k

Y1,Y0
}Kk=1, respectively. Combined with (46), this implies

νmix(A) =

K∑
k=1

akν
k(A), for all A ∈ A := {(−∞, y0]× (−∞, y1] : (y0, y1) ∈ R2}. (48)

It can be seen that A is a π-system, σ(A) = B(R2), and the class of sets satisfying (48) constitutes a
λ-system. Following from π − λ Theorem,

νmix(A) =

K∑
k=1

akν
k(A), for all A ∈ B(R2). (49)

From the above identity (49), we note that akν
k ≪ νmix for all k ∈ {1, . . . ,K}. By Radon-Nikodym The-

orem (e.g., Royden and Fitzpatrick (2010, p.386, Problem 54.1)), there exist nonnegative Borel measurable
functions d(akν

k)/dνmix such that the following equalities hold for all Borel sets A ∈ B(R2) and for each
k ∈ {1, . . . ,K}: ∫

A

pk(u, v)
d(akν

k)

dνmix
dνmix =

∫
A

pk(u, v) d(akν
k) =

∫
A

akp
k(u, v) dνk.

Taking A = (−∞, y1]× (−∞, y0] and combining these equalities across k ∈ {1, . . . ,K} then gives∫
u≤y1,v≤y0

K∑
k=1

pk(u, v)
d(akν

k)

dνmix
dνmix =

K∑
k=1

ak

∫
u≤y1,v≤y0

pk(u, v) dνk

=

∫
u≤y1,v≤y0

pmix(u, v) dνmix

The second equality holds by (47). Since A constitutes a π-system, and R2 can be written as a countable
union of elements in the class A, applying Billingsley (1995, Theorem 16.10.(iii)) then leads to the following
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equality:

pmix(u, v) =

K∑
k=1

pk(u, v)
d(akν

k)

dνmix
(u, v)

almost surely with respect to the measure νmix on (R2,B(R2)). Replacing (u, v) with random variables
(Y1, Y0), the above equality is equivalent to

pmix(Y1, Y0) =

K∑
k=1

pk(Y1, Y0)
d(akν

k)

dνmix
(Y1, Y0)

almost surely under the distribution Fmix
Y1,Y0

. Next we show that the weights add up to one and they are
non-negative.

Following from (49), the conclusion in Royden and Fitzpatrick (2010, p.386, Problem 54.2) implies

K∑
k=1

d(akν
k)

dνmix
=

dνmix

dνmix
= 1, almost surely-νmix.

By definition, Radon-Nikodym derivatives are nonnegative. So we have

d(akν
k)

dνmix
= 1−

∑
j ̸=k

d(ajν
j)

dνm
∈ [0, 1], almost surely-νmix.

Therefore, we have shown that pmix(Y1, Y0) is a convex combination of {pk(Y1, Y0)}Kk=1 almost surely, with
weights d(akν

k)/dνmix being a non-negative measurable function of (Y1, Y0), as desired.

Proof of Theorem 2. Fix a w ∈ supp(W ) and (ε, γ) ∈ [0, 1]2, we prove this by constructing a probability

distribution P̃ for (Y1, Y0, X) conditional on W = w such that for all y ∈ R and x ∈ {0, 1}, the following
conditions hold

1. P̃(Y1 ≤ y | W = w) = εFY1|W (y | w) + (1− ε)FY1|W (y | w) and
P̃(Y0 ≤ y | W = w) = γFY0|W (y | w) + (1− γ)FY0|W (y | w);

2. P̃(X = x | W = w) = px|w;

3. P̃(Yx ≤ y | X = x,W = w) = FY |X,W (Y | X,w);

4. P̃(X = 1 | Y1, Y0,W = w) ∈ [c, c] for P̃-almost surely.

Compared to the proof of Theorem 1, we remove the requirement that the copulas between Y1 and Y0

conditional on (X,W ) can be arbitrary.
As in Lemma 11, we have constructed the following four joint (conditional) cdfs of (Y1, Y0, X) | W = w:

Ful(y1, y0, x|w) = xmin
{
FY |X,W (y1 | 1, w), FY0|X(y0 | 1)

}
p1|w

+ (1− x)min
{
FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)

}
p0|w

F lu(y1, y0, x|w) = xmin
{
FY |X,W (y1 | 1), FY0|X,W (y0 | 1, w)

}
p1|w

+ (1− x)min
{
FY1|X,W (y1 | 0, w), FY |X,W (y0|0, w)

}
p0|w

Fuu(y1, y0, x|w) = xmax
{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
p1|w

+ (1− x)min
{
FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0

}
p0|w

F ll(y1, y0, x|w) = xmax
{
FY |X,W (y1 | 1, w) + FY0|X,W (y0 | 1, w)− 1, 0

}
p1|w

+ (1− x)min
{
FY1|X,W (y1 | 0, w) + FY |X,W (y0|0, w)− 1, 0

}
p0|w.
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Let the joint distribution of (Y1, Y0, X) | W = w be defined as below:

P̃(Y1 ≤ y1, Y0 ≤ y0, X = x | W = w) = γ
[
εF ll(y1, y0, x|w) + (1− ε)Ful(y1, y0, x|w)

]
+ (1− γ)

[
εF lu(y1, y0, x|w) + (1− ε)Fuu(y1, y0, x|w)

]
.

(50)

As shown in Lemma 11, the functions F ll, Ful, F lu, and Fuu are valid cdfs, hence their convex com-
bination (50) also yields a valid cdf. Next we verify that this cdf satisfies conditions 1-4 listed above, thus
concluding that (εFY1|W + (1− ε)FY1|W , γFY0|W + (1− γ)FY0|W ) is in the identified set.

Verifying Condition 1: For y ∈ R, we have

P̃(Y1 ≤ y | W = w)

= lim
y0→+∞

P̃(Y1 ≤ y, Y0 ≤ y0, X = 1 | W = w) + lim
y0→+∞

P̃(Y1 ≤ y, Y0 ≤ y0, X = 0 | W = w)

=
∑
x=0,1

γ

[
ε lim
y0→+∞

F ll(y, y0, x|w) + (1− ε) lim
y0→+∞

Ful(y, y0, x|w)
]

+
∑
x=0,1

(1− γ)

[
ε lim
y0→+∞

F lu(y, y0, x|w) + (1− ε) lim
y0→+∞

Fuu(y, y0, x|w)
]

= γ
[
εFY1|W (y | w) + (1− ε)FY1|W (y | w)

]
+ (1− γ)

[
εFY1|W (y | w) + (1− ε)FY1|W (y | w)

]
= εFY1|W (y | w) + (1− ε)FY1|W (y | w),

where the third equality uses the conclusion from condition 1 in the proof of Lemma 11.
Likewise,

P̃(Y0 ≤ y | W = w)

= lim
y1→+∞

P̃(Y1 ≤ y1, Y0 ≤ y,X = 1 | W = w) + lim
y1→+∞

P̃(Y1 ≤ y1, Y0 ≤ y0, X = 0 | W = w)

=
∑
x=0,1

γ

[
ε lim
y1→+∞

F ll(y1, y, x|w) + (1− ε) lim
y1→+∞

Ful(y1, y, x|w)
]

+
∑
x=0,1

(1− γ)

[
ε lim
y1→+∞

F lu(y1, y, x|w) + (1− ε) lim
y1→+∞

Fuu(y1, y, x|w)
]

= γ
[
εFY0|W (y | w) + (1− ε)FY0|W (y | w)

]
+ (1− γ)

[
εFY0|W (y | w) + (1− ε)FY0|W (y | w)

]
= γFY0|W (y | w) + (1− γ)FY0|W (y | w).

Verifying Condition 2: For x ∈ {0, 1}, we have that

P̃(X = x | W = w) = lim
y0,y1→+∞

P̃(Y1 ≤ y1, Y0 ≤ y0, x | W = w)

= γ

[
ε lim
y0,y1→+∞

F ll(y1, y0, x|w) + (1− ε) lim
y0,y1→+∞

Ful(y1, y0, x|w)
]

+ (1− γ)

[
ε lim
y0,y1→+∞

F lu(y1, y0, x|w) + (1− ε) lim
y0,y1→+∞

Fuu(y1, y0, x|w)
]

= γ
[
εpx|w + (1− ε)px|w

]
+ (1− γ)

[
εpx|w + (1− ε)px|w

]
= px|w,

where the third equality follows by the condition 2 in the proof of Lemma 11.

Verifying Condition 3: Similar to the proof of condition 2, condition 3 follows by the fact that all the
cdfs Ful, F lu, Fuu, and F ll satisfy condition 3 as argued in Lemma 11. Hence it follows that their convex
combination P̃ also satisfies this condition.
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Verifying Condition 4: As in the proof of Lemma 11, we established propensity score functions pul, plu,
puu, and pll under the cdfs Ful, F lu, Fuu, and F ll, respectively. Applying Lemma 12 to the conditional
mixture distribution P̃ gives the propensity score as below

Ẽ(X | Y1, Y0,W = w)

= ωul(Y1, Y0)p
ul(Y1, Y0, w) + ωlu(Y1, Y0)p

lu(Y1, Y0, w) + ωuu(Y1, Y0)p
uu(Y1, Y0, w) + ωll(Y1, Y0)p

ll(Y1, Y0, w)

almost surely under P̃, where ωk(Y1, Y0) ∈ [0, 1], and
∑

k ω
k(Y1, Y0) = 1 almost surely under P̃ for k ∈

{ul, lu, uu, ll}. Since we have argued that pk(u, v, w) ∈ [c, c] for (u, v) ∈ R2, therefore, Ẽ(X | Y1, Y0,W =

w) ∈ [c, c] almost surely under P̃, which concludes the proof.

C.3 Proofs for Section 4.2

Proof of Theorem 3. First, we prove this proposition when Assumption 2 holds. Fix an arbitrary (F1, F0, C) ∈
Imarg
0 (FY,X,W ; c). By the definition of Imarg

0 (FY,X,W ; c), there exists a joint cdf FY1,Y0|X,W that generates
(F1, F0, C) and satisfies Assumption 2. By Lemma 2 and the monotonicity assumption, we have

θ(FY1|W , FY0|W , FY,X,W ) ≤ θ(F1, F0, FY,X,W ) ≤ θ(FY1|W , FY0|W , FY,X,W ).

Since (F1, F0, C) is arbitrary, we have

θ(FY1|W , FY0|W , FY,X,W ) ≤ inf
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)
θ(F1, F0, FY,X,W )

and
sup

(F1,F0,C)∈Imarg
0 (FY,X,W ;c)

θ(F1, F0, FY,X,W ) ≤ θ(FY1|W , FY0|W , FY,X,W ).

Furthermore, as demonstrated by Theorem 1, (FY1|W , FY0|W , C) and (FY1|W , FY0|W , C) are contained in
the identified set for any copula C ∈ C1,0|X,W . This implies

inf
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)
θ(F1, F0, FY,X,W ) ≤ θ(FY1|W , FY0|W , FY,X,W )

and
sup

(F1,F0,C)∈Imarg
0 (FY,X,W ;c)

θ(F1, F0, FY,X,W ) ≥ θ(FY1|W , FY0|W , FY,X,W ).

Thus we conclude that

inf
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)
θ(F1, F0, FY,X,W ) = θ(FY1|W , FY0|W , FY,X,W )

sup
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)

θ(F1, F0, FY,X,W ) = θ(FY1|W , FY0|W , FY,X,W ).

Note that Theorem 1 also implies that (εFY1|W + (1 − ε)FY1|W , γFY0|W + (1 − γ)FY0|W , C1,0|X,W )

belongs to the identified set Imarg
0 (FY,X,W ; c) for each (ε, γ) ∈ [0, 1]2. By the continuity of the mapping

(ϵ, γ) 7→ θ(εFY1|W+(1−ϵ)FY1|W , γFY0|W+(1−γ)FY0|W ) and the definition of Imarg
θ (FY,X,W ; c), the sharpness

of the interior then follows by the intermediate value theorem. The proof follows the same arguments when
imposing Assumption 3, where we use Theorem 2 instead of Theorem 1.

Proof of Lemma 3. Part 1: Because QYx
(U) ∼ Yx when U ∼ Unif(0, 1), we can write

E[Yx] = E[QYx
(U)] =

∫ 1

0

QYx
(τ) dτ =

∫ 1

0

θQ(FYx
; τ) dτ.

By the proof of Part 2 below, θQ(FYx
; τ) is increasing in FYx

for all τ ∈ (0, 1). This implies θE(FYx
) =
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∫ 1

0
θQ(FYx

; τ) dτ is also increasing. Continuity follows from

θE(εFYx
+ (1− ε)FYx) =

∫
y d
(
εFYx

(y) + (1− ε)FYx(y)
)

=

∫
y d
(
εFYx

(y)
)
+

∫
y d
(
(1− ε)FYx

(y)
)

= εθE(FYx
) + (1− ε)θE(FYx

)

being continuous in ε over ε ∈ [0, 1].
Part 2: Suppose FYx

(y) ≤ F ′
Yx
(y) for all y ∈ R. Therefore, for any τ ∈ (0, 1), {y ∈ R : FYx

(y) ≥ τ} ⊆
{y ∈ R : F ′

Yx
(y) ≥ τ}. Hence,

θQ(FYx
; τ) = inf{y ∈ R : F1(y) ≥ τ} ≥ inf{y ∈ R : F ′

Yx
(y) ≥ τ} = θQ(F

′
Yx
; τ).

Since FYx
⪰ F ′

Yx
, we have that θQ(FYx

; τ) is increasing in FYx
.

Part 3: Suppose FYx
(y) ≤ F ′

Yx
(y) for all y ∈ R. Denote by

FYx|X(y | 1− x) =
FYx(y)− FY |X(Y | X)px

p1−x
,

F ′
Yx|X(y | 1− x) =

F ′
Yx
(y)− FY |X(Y | X)px

p1−x
.

Then FYx|X(· | 1− x) ⪰ F ′
Yx|X(· | 1− x) and, by Part 2,

θCQ(FYx
; τ) = θQ(FYx|X(· | 1− x); τ) ≥ θQ(F

′
Yx|X(· | 1− x); τ) = θCQ(F

′
Yx
; τ)

for any τ ∈ (0, 1). Therefore, θCQ is increasing in FYx .
Part 4: Suppose FY1|W ⪰ FY ′

1 |W . This implies∫
y dFY1|W (y | w) ≥

∫
y dFY ′

1 |W (y | w) for all w ∈ supp(W )

which in turn implies

1

(∫
y dFY1|W (y | w)− E[Y0 | W = w] ≤ z

)
≤ 1

(∫
y dFY ′

1 |W (y | w)− E[Y0 | W = w] ≤ z

)
for all w ∈ supp(W ) and hence

P
(∫

y dFY1|W (y | W )− E[Y0 | W ] ≤ z

)
≤ P

(∫
y dFY ′

1 |W (y | W )− E[Y0 | W ] ≤ z

)
.

The first statement holds by by Part 1 of this lemma, the second holds directly, and the third by integrating
over the distribution of W . Therefore, this last cdf is decreasing in FY1|W . By Part 2 of this lemma, its
corresponding quantile will be decreasing in FY1|W . This parameter is decreasing in FY0|W because of the
minus sign inside the CATE.

Part 5: Suppose FYx
⪰ F ′

Yx
for x ∈ {0, 1}. Then, FYx

(y) ≤ F ′
Yx
(y) for all y ∈ R. Therefore, for any

(y1, y0) ∈ R2 and copula C

θ(FY1
, FY0

, C; y1, y0) = C(FY1
(y0), FY0

(y0)) ≤ C(F ′
Y1
(y0), F

′
Y0
(y0)) = θ(F ′

Y1
, F ′

Y0
, C; y1, y0)

because C, as a copula, is nondecreasing in its arguments. We conclude that this parameter is decreasing in
both FY1

and FY0
.

Part 6: We begin by showing that (Y1, Y0) ∼ (QY1(U1), QY0(U0)) where (U1, U0) have joint cdf C. To
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see this, note that FY1,Y0
(y1, y0) = C(FY1

(y1), FY0
(y0)) by Sklar’s Theorem. Also,

FY1,Y0(y1, y0) = C(FY1(y1), FY0(y0))

= P(U1 ≤ FY1(y1), U0 ≤ FY0(y0))

= P(QY1(U1) ≤ y1, QY0(U0) ≤ y0),

where the third equality follows from Lemma 6.1.
Based on this, we can write the functional as

θDTE(FY1 , FY0 , C; z) = E[1(Y1 − Y0 ≤ z)]

= E[1(QY1(U1)−QY0(U0) ≤ z)]

=

∫
1(QY1(u1)−QY0(u0) ≤ z) dC(u1, u0).

Now suppose that FY1
⪰ F ′

Y1
. By Part 2 above, this implies that QY1

(u1) ≥ Q′
Y1
(u1) for all u1 ∈ (0, 1) and

thus

θDTE(FY1 , FY0 , C; z) =

∫
1(QY1(u1)−QY0(u0) ≤ z) dC(u1, u0)

≤
∫
1(Q′

Y1
(u1)−QY0

(u0) ≤ z) dC(u1, u0)

= θDTE(F
′
Y1
, FY0

, C; z).

Therefore, θDTE(FY1 , FY0 , C; z) is decreasing in FY1 . An analogous argument shows that it is increasing in
FY0

.

D Proofs for Section 5

Proof of Proposition 2. By Lemma 2 and the monotonicity of copulas in their arguments, we have that

sup
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)

θCDF(F1, F0, C, FY,X,W ; y1, y0)

≤ sup
C∈C1,0|X,W

θCDF(FY1|X,W , FY0|X,W , C, FY,X,W ; y1, y0)

= θCDF(FY1|X,W , FY0|X,W , C, FY,X,W ; y1, y0).

The equality follows from the Fréchet-Hoeffding bounds. Similarly,

inf
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)
θCDF(F1, F0, C, FY,X,W ; y1, y0)

≥ inf
C∈C1,0|X,W

θCDF(FY1|X,W , FY0|X,W , C, FY,X,W ; y1, y0)

= θCDF(FY1|X,W , FY0|X,W , C, FY,X,W ; y1, y0).

To show sharpness of the interval (7), consider the following choices for conditional cdfs and copulas:

(ε1FY1|X,W + (1− ε1)FY1|X,W , ε2FY0|X,W + (1− ε2)FY0|X,W , ε3C + (1− ε3)C)

for ε := (ε1, ε2, ε3) ∈ [0, 1]3. For any ε ∈ [0, 1]3, this triple belongs to Imarg
0 (FY,X,W ; c). Setting ε = (0, 0, 0)

and ε = (1, 1, 1) yields the upper and lower bounds of the interval, so the bounds are sharp. To show the
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interior is sharp, consider the function

ε 7→ θCDF


ε1FY1|X,W + (1− ε1)FY1|X,W ,

ε2FY0|X,W + (1− ε2)FY0|X,W ,

ε3C + (1− ε3)C,
FY,X,W

; y1, y0


= ε3E

[
max

{
ε1FY1|X,W (y1 | X,W ) + (1− ε1)FY1|X,W (y1 | X,W )

+ε2FY0|X,W (y0 | X,W ) + (1− ε2)FY0|X,W (y0 | X,W )− 1
, 0

}]
+ (1− ε3)E

[
min

{
ε1FY1|X,W (y1 | X,W ) + (1− ε1)FY1|X,W (y1 | X,W ),

ε2FY0|X,W (y0 | X,W ) + (1− ε2)FY0|X,W (y0 | X,W )

}]
.

This mapping is continuous in ε3. It is also continuous in ε1 and ε2 since the functions (u, v) 7→ C(u, v)
and (u, v) 7→ C(u, v) are both continuous, and by the dominated convergence theorem. Therefore, by the
intermediate value theorem, all values in the interval (7) are attained and thus the identified set is this
interval.

Proof of Proposition 3. By lemmas 2 and 3.5

sup
(F1,F0,C)∈Imarg

0 (FY,X,W ;c)

θDTE(FY1|X,W , FY0|X,W , C1,0|X,W , FY,X,W ; z)

≤ sup
C∈C1,0|X,W

θDTE(FY1|X,W , FY0|X,W , C, FY,X,W ; z).

By Lemma 2.1 in Fan and Park (2010),

sup
C∈C1,0|X,W

θDTE(FY1|X,W , FY0|X,W , C, FY,X,W ; z)

≤ 1 + E
[
min

{
inf
y∈R

(
FY1|X,W (y | X,W )− FY0|X,W (y − z | X,W )

)
, 0

}]
.

(51)

This bound can be attained because the cdf pair (FY1|X,W , FY0|X,W ) is attainable by Theorem 1, and
the bound in (51) is attained by Lemma 2.1 in Fan and Park (2010) since the set of conditional copulas
under marginal c-dependence is unrestricted.

Similar proof can be used to show that the lower bound

E
[
max

{
sup
y∈R

(
FY1|X,W (y | X,W )− FY0|X,W (y − z | X,W )

)
, 0

}]
is sharp as well.

E Appendix: Explicit Bounds on Expected Potential Outcomes

Lemma 13. Let Y be random variable with cdf F and quantile function Q. Suppose E(|Y |) < ∞. Then,
for a ∈ (0, 1): ∫ a

0

Q(u) du = E[Y | Y ≤ Q(a)]F (Q(a))−Q(a)(F (Q(a))− a)∫ 1

a

Q(u) du = E[Y | Y > Q(a)](1− F (Q(a))) +Q(a)(F (Q(a))− a).
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If P(Y = Q(a)) = 0, then ∫ a

0

Q(u) du = E[Y | Y ≤ Q(a)]a∫ 1

a

Q(u) du = E[Y | Y > Q(a)](1− a).

Lemma 14. Let Assumption 1 hold. Then,∫
y dFY1|W (y | w)

=
p1|w

c

[
E[Y | Y ≤ Q1, X = 1,W = w]FY |X,W (Q1 | 1, w)−Q1(FY |X,W (Q1 | 1, w)− τ1)

]
+

p1|w

c

[
E[Y | Y > Q1, X = 1,W = w](1− FY |X,W (Q1 | 1, w)) +Q1(FY |X,W (Q1 | 1, w)− τ1)

]
,

(52)

∫
y dFY1|W (y | w)

=
p1|w

c

[
E[Y | Y ≤ Q

1
, X = 1,W = w]FY |X,W (Q

1
| 1, w)−Q

1
(FY |X,W (Q

1
| 1, w)− τ1)

]
+

p1|w

c

[
E[Y | Y > Q

1
, X = 1,W = w](1− FY |X,W (Q

1
| 1, w)) +Q

1
(FY |X,W (Q

1
| 1, w)− τ1)

] (53)

and ∫
y dFY0|W (y | w)

=
p0|w

1− c

[
E[Y | Y ≤ Q0, X = 0,W = w]FY |X,W (Q0|0, w)−Q0(FY |X,W (Q0|0, w)− τ0)

]
+

p0|w

1− c

[
E[Y | Y > Q0, X = 0,W = w](1− FY |X,W (Q0|0, w)) +Q0(FY |X,W (Q0|0, w)− τ0)

]
,

(54)

∫
y dFY0|W (y | w)

=
p0|w

1− c

[
E[Y | Y ≤ Q

0
, X = 0,W = w]FY |X,W (Q

0
|0, w)−Q

0
(FY |X,W (Q

0
|0, w)− τ0)

]
+

p0|w

1− c

[
E[Y | Y > Q

0
, X = 0,W = w](1− FY |X,W (Q

0
|0, w)) +Q

0
(FY |X,W (Q

0
|0, w)− τ0)

]
.

(55)

If Y is continuously distributed conditionally on (X,W ), then these expressions simplify to∫
y dFY1|W (y | w) = E[Y | Y ≤ Q1, X = 1,W = w]

c− p1|w

c− c

+ E[Y | Y > Q1, X = 1,W = w]
p1|w − c

c− c∫
y dFY1|W (y | w) = E[Y | Y ≤ Q

1
, X = 1,W = w]

p1|w − c

c− c

+ E[Y | Y > Q
1
, X = 1,W = w]

c− p1|w

c− c
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and ∫
y dFY0|W (y | w) = E[Y | Y ≤ Q0, X = 0,W = w]

p1|w − c

c− c

+ E[Y | Y > Q0, X = 0,W = w]
c− p1|w

c− c∫
y dFY0|W (y | w) = E[Y | Y ≤ Q

0
, X = 0,W = w]

c− p1|w

c− c

+ E[Y | Y > Q
0
, X = 0,W = w]

p1|w − c

c− c

where Qx, Qx
, τx, and τx for x = 0, 1 are defined in Appendix A.

E.1 Proofs of Analytical Bounds on Expectations

Proof of Lemma 13. First we consider the equality involving
∫ a

0
Q(u)du. Note that∫ a

0

Q(u) du =

∫ 1

0

Q(u)1[u ≤ a] du

=

∫ 1

0

Q(u)1[Q(u) ≤ Q(a), u ≤ a] du

=

∫ 1

0

Q(u)1[Q(u) ≤ Q(a)]du−
∫ 1

0

Q(u)1[Q(u) ≤ Q(a), u > a] du

=

∫ 1

0

Q(u)1[Q(u) ≤ Q(a)]du−
∫ 1

0

Q(u)1[Q(u) = Q(a), u > a] du

=

∫ 1

0

Q(u)1[Q(u) ≤ Q(a)]du−Q(a)

∫ 1

0

1[Q(u) ≤ Q(a), u > a] du,

where the second, the fourth, and the last line follow by the monotonicity of quantile function Q(·).
The first term in the last line can be written as below:∫ 1

0

Q(u)1[Q(u) ≤ Q(a)] du = E(Y 1[Y ≤ Q(a)]) = E(Y | Y ≤ Q(a))F (Q(a)),

where the first equality follows by that Q(U) has the same distribution as Y if U is uniformly distributed
over [0, 1]. To expand the second term, note that {u : Q(u) ≤ Q(a), u > a} is a half-open interval with
the left endpoint a excluded, and right endpoint sup{u : Q(u) ≤ Q(a)} included in the interval due to the
left-continuity of quantile function Q(·). So we have

Q(a)

∫ 1

0

1[Q(u) ≤ Q(a), u > a] du = Q(a)(sup{u : Q(u) ≤ Q(a)} − a)

= Q(a)(sup{u : u ≤ F (Q(a))} − a)

= Q(a)(F (Q(a))− a),

where the second line holds by Lemma 6.1. Given the above derivations, we conclude that∫ a

0

Q(u) du = E[Y | Y ≤ Q(a)]F (Q(a))−Q(a)(F (Q(a))− a),

as desired.
Regarding the second equality involving

∫ 1

a
Q(u)du, note that

∫ 1

0
Q(u) du = E[Q(U)] = E[Y ]. This
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implies ∫ 1

a

Q(u) du =

∫ 1

0

Q(u)du−
∫ a

0

Q(u) du

= E[Y ]− E[Y | Y ≤ Q(a)]F (Q(a)) +Q(a)(F (Q(a))− a)

= E[Y | Y > Q(a)](1− F (Q(a))) +Q(a)(F (Q(a))− a),

where the last line follows by the law of iterated expectation. So the second equality is established.
When P(Y = Q(a)) = 0, the the CDF F is continuous at Q(a), which implies that F (Q(a)) = a by

Lemma 6.2. Therefore,∫ a

0

Q(u) du = E[Y | Y ≤ Q(a)]F (Q(a))−Q(a)(F (Q(a))− a) = E[Y | Y ≤ Q(a)]a,

and similar arguments can be applied to
∫ 1

a
Q(u) du as well. Therefore we have established the desired

result.

Proof of Lemma 14. We prove the claim for
∫ 1

0
y dFY1|W (y | w), and note that the claims for the other terms

can be derived analogously.
Let U ∼ Unif(0, 1), then Q

Y1|W
(U | 1, w) has the distribution FY1|W (· | 1, w), which implies

∫
y dFY1|W (y | w) =

∫ 1

0

Q
Y1|W

(τ | w) dτ

=

∫ 1

0

QY |X,W

(
cτ

p1|w
| 1, w

)
1

[
τ ≤

c− p1|w

c− c

]
dτ (56)

+

∫ 1

0

QY |X,W

(
p1|w − c+ cτ

p1|w
| 1, w

)
1

[
τ >

c− p1|w

c− c

]
dτ (57)

We expand the term (56) below:∫ 1

0

QY |X,W

(
cτ

p1|w
| 1, w

)
1

[
τ ≤

c− p1|w

c− c

]
dτ

=
p1|w

c

∫ τ1

0

QY |X,W (u | 1, w) du

=
p1|w

c

[
E[Y | Y ≤ QY |X,W (τ1 | 1, w), X = 1,W = w]FY |X,W (QY |X,W (τ1 | 1, w) | 1, w)

]
−

p1|w

c
QY |X,W (τ1 | 1, w)

[
FY |X,W (QY |X,W (τ1 | 1, w) | 1, w)− τ1

]
=

p1|w

c

[
E[Y | Y ≤ Q1, X = 1,W = w]FY |X,W (Q1 | 1, w)−Q1(FY |X,W (Q1 | 1, w)− τ1)

]
. (58)

The first equality uses the changes of variable u = cτ/p1|w and recall that

τ1 =
c

p1|w

c− p1|w

c− c
.

The second equality follows by Lemma 13, and the last line holds by recalling that Q1 = QY |X,W (τ1 | 1, w).
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Similarly, we can expand the term (57) below:∫ 1

0

QY |X,W

(
p1|w − c+ cτ

p1|w
| 1, w

)
1

[
τ >

c− p1|w

c− c

]
dτ

=

∫ 1

τ1

QY |X,W (u | 1, w) du

=
p1|w

c

[
E[Y | Y > Q1, X = 1,W = w](1− FY |X,W (Q1 | 1, w)) +Q1

(
FY |X,W (Q1 | 1, w)− τ1

)]
, (59)

where we use the change of variable u = 1− (1−τ)c
p1|w

in the second line.

Combining the above results, we con combine (58) and (59) to obtain the analytical formula of
∫
y dFY1|W :∫

y dFY1|W (y | w)

=
p1|w

c

[
E[Y | Y ≤ Q1, X = 1,W = w]FY |X,W (Q1 | 1, w)−Q1(FY |X,W (Q1 | 1, w)− τ1)

]
+

p1|w

c

[
E[Y | Y > Q1, X = 1,W = w](1− FY |X,W (Q1 | 1, w)) +Q1

(
FY |X,W (Q1 | 1, w)− τ1

)]
.

Finally, we note that if Y is continuously distributed conditional on (X,W ), then

FY |X,W (Q1 | 1, w) = τ1,

which implies∫
y dFY1|W (y | w) =

p1|w

c
E[Y | Y ≤ Q1, X = 1,W = w]τ1 +

p1|w

c
E[Y | Y > Q1, X = 1,W = w](1− τ1)

= E[Y | Y ≤ Q1, X = 1,W = w]
c− p1|w

c− c
+ E[Y | Y > Q1, X = 1,W = w]

p1|w − c

c− c
,

as desired.
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